Proteolytic ceramic capillary membranes for the production of peptides under flow

2019 ◽  
Vol 147 ◽  
pp. 89-99 ◽  
Author(s):  
Marieke M. Hoog Antink ◽  
Tim Sewczyk ◽  
Stephen Kroll ◽  
Pál Árki ◽  
Sascha Beutel ◽  
...  
Keyword(s):  
Polymers ◽  
2017 ◽  
Vol 9 (12) ◽  
pp. 654 ◽  
Author(s):  
Jan Back ◽  
Martin Spruck ◽  
Marc Koch ◽  
Lukas Mayr ◽  
Simon Penner ◽  
...  

2010 ◽  
Vol 30 (10) ◽  
pp. 1742-1755 ◽  
Author(s):  
Anika MS Hartz ◽  
Anne Mahringer ◽  
David S Miller ◽  
Björn Bauer

The ATP-driven efflux transporter, breast cancer resistance protein (BCRP), handles many therapeutic drugs, including chemotherapeutics, limiting their ability to cross the blood–brain barrier. This study provides new insight into rapid, nongenomic regulation of BCRP transport activity at the blood–brain barrier. Using isolated brain capillaries from rats and mice as an ex vivo blood–brain barrier model, we show that BCRP protein is highly expressed in brain capillary membranes and functionally active in intact capillaries. We show that nanomolar concentrations of 17-β-estradiol (E2) rapidly reduced BCRP transport activity in the brain capillaries. This E2-mediated effect occurred within minutes and did not involve transcription, translation, or proteasomal degradation, indicating a nongenomic mechanism. Removing E2 after 1 h fully reversed the loss of BCRP activity. Experiments using agonists and antagonists for estrogen receptor (ER)α and ERβ and brain capillaries from ERα and ERβ knockout mice demonstrated that E2 could signal through either receptor to reduce BCRP transport function. We speculate that this nongenomic E2-signaling pathway could potentially be used for targeting BCRP at the blood–brain barrier, in brain tumors, and in brain tumor stem cells to improve chemotherapy of the central nervous system.


2013 ◽  
Vol 53 (7) ◽  
pp. 521-528 ◽  
Author(s):  
A. V. Bil’dyukevich ◽  
T. V. Plisko ◽  
G. A. Branitskii ◽  
N. G. Semenkevich ◽  
I. L. Zharkevich
Keyword(s):  

1996 ◽  
Vol 81 (1) ◽  
pp. 105-116 ◽  
Author(s):  
C. S. Leach ◽  
C. P. Alfrey ◽  
W. N. Suki ◽  
J. I. Leonard ◽  
P. C. Rambaut ◽  
...  

The fluid and electrolyte regulation experiment with seven subjects was designed to describe body fluid, renal, and fluid regulatory hormone responses during the Spacelab Life Sciences-1 (9 days) and -2 (14 days) missions. Total body water did not change significantly. Plasma volume (PV; P < 0.05) and extracellular fluid volume (ECFV; P < 0.10) decreased 21 h after launch, remaining below preflight levels until after landing. Fluid intake decreased during weightlessness, and glomerular filtration rate (GFR) increased in the first 2 days and on day 8 (P < 0.05). Urinary antidiuretic hormone (ADH) excretion increased (P < 0.05) and fluid excretion decreased early in flight (P < 0.10). Plasma renin activity (PRA; P < 0.10) and aldosterone (P < 0.05) decreased in the first few hours after launch; PRA increased 1 wk later (P < 0.05). During flight, plasma atrial natriuretic peptide concentrations were consistently lower than preflight means, and urinary cortisol excretion was usually greater than preflight levels. Acceleration at launch and landing probably caused increases in ADH and cortisol excretion, and a shift of fluid from the extracellular to the intracellular compartment would account for reductions in ECFV. Increased permeability of capillary membranes may be the most important mechanism causing spaceflight-induced PV reduction, which is probably maintained by increased GFR and other mechanisms. If the Gauer-Henry reflex operates during spaceflight, it must be completed within the first 21 h of flight and be succeeded by establishment of a reduced PV set point.


1988 ◽  
Vol 254 (3) ◽  
pp. F364-F373 ◽  
Author(s):  
M. Wolgast ◽  
G. Ojteg

In the classical Starling model the hydrostatic pressure in the pores is generally lower than that in capillary plasma, a phenomenon that necessitates the assumption of a rigid porous membrane. In flexible gel membranes, the capillary pressure is suggested to be balanced by a gel swelling pressure generated by negative fixed charges. Regarding the fluid transfer, the transmembranous electrical potential gradient will generate a net driving electroosmotic force. This force will be numerically similar to the net driving Starling force in small pores, but distinctly different in large pores. From previous data on the hydrostatic and colloid osmotic forces, the fixed charge density at the two interfaces of 1) the glomerular and 2) the peritubular capillary membrane were calculated and used to predict the flux of a series of charged protein probes. The close fit to the experimental data in both the capillary beds is in line with the gel concept presented. The gel concept (but hardly a rigid membrane) explains the ability of capillary membranes to alter their permeability in response to external forces. Gel membranes can furthermore be predicted to have a self-rinsing ability, as entrapped proteins will increase the local fixed charge density, leading to fluid entry into the region between the particle and the pore rim, which by consequent widening of the channel will facilitate extrusion of trapped proteins.


2005 ◽  
Vol 51 (6-7) ◽  
pp. 221-229 ◽  
Author(s):  
A. Lerch ◽  
S. Panglisch ◽  
R. Gimbel

Recently, new concepts for direct or pre-treatment minimised processes for the treatment of surface waters to potable water have aroused more and more interest. The requirements of such concepts are various and express the desire for high flexibility, adaptation on various water qualities and expandability of the treatment process. These requirements can be nearly ideally achieved by membrane technology. This publication presents the actual approach in research, piloting and operation of selective plants, research institutions and universities for the hybrid process coagulation/ultrafiltration (UF), or microfiltration (MF) respectively. The focus is set on the discussion of the influences of the mass freight, coagulation conditions, temperature and theoretical considerations about the coating layer build-up in dead-end and IN/OUT-mode driven MF and UF capillary membranes with a coagulation step prior to membrane filtration.


2014 ◽  
Vol 468 ◽  
pp. 250-258 ◽  
Author(s):  
Vesna Middelkoop ◽  
Hong Chen ◽  
Bart Michielsen ◽  
Marijke Jacobs ◽  
Guttorm Syvertsen-Wiig ◽  
...  

2013 ◽  
Vol 704 ◽  
pp. 66-71
Author(s):  
Grazyna Zakrzewska ◽  
Pawel Bieluszka ◽  
Ewelina Chajduk ◽  
Stanislaw Wolkowicz

The extraction of uranium from aqueous model solutions, as well as from real solutions reulting from leaching uranium ores was carried out in the system equipped with the Liqui-Cel® Extra-Flow membrane contactor with polypropylene capillary membranes. D2EHPA in toluene was used as an organic phase. Different arrangements of flow inside the membrane module were tested. The better approach appeared to be the arrangement with aqueous phase in the shell side of the contactor and organic phase inside the capillary membrane. The extraction efficiency for model solutions reached 95% and 87% for real post-leaching liquors.


Sign in / Sign up

Export Citation Format

Share Document