Extending unified-theory-of-reinforcement neural networks to steady-state operant behavior

2016 ◽  
Vol 127 ◽  
pp. 52-61 ◽  
Author(s):  
Olivia L. Calvin ◽  
J.J. McDowell
1992 ◽  
Vol 26 (9-11) ◽  
pp. 2461-2464 ◽  
Author(s):  
R. D. Tyagi ◽  
Y. G. Du

A steady-statemathematical model of an activated sludgeprocess with a secondary settler was developed. With a limited number of training data samples obtained from the simulation at steady state, a feedforward neural network was established which exhibits an excellent capability for the operational prediction and determination.


Author(s):  
Marek J. Lefik ◽  
Daniela P. Boso ◽  
Bernhard A. Schrefler

For a steady state convection problem, assuming given concentration field values in a few measurement points and hydraulic head values in the same piezometers, the source of the concentration, and its intensity are deduced using Artificial Neural Networks (ANNs). ANNs are trained with data extracted from Finite Difference (FD) solution of a classical convection problem for small Peclet number. The numerical analysis is exemplified for vanishing, homogeneous and non-homogeneous field of velocity. It is shown that the diffusivity vector can also be identified. The complexity of the problem is discussed for each studied case.


Author(s):  
P. N. Botsaris ◽  
D. Bechrakis ◽  
P. D. Sparis

The intelligent control as fuzzy or artificial is based on either expert knowledge or experimental data and therefore it possesses intrinsic qualities like robustness and ease implementation. Lately, many researchers present studies aim to show that this kind of control can be used in practical applications such as the idle speed control problem in automotive industry. In this study, an estimation of an automobile three-way catalyst performance with artificial neural networks is presented. It may be an alternative approach for an on board diagnostic system (OBD) to predict the catalyst performance. This method was tested using data sets from two kind of catalysts, a brand new and an old one on a laboratory bench at idle speed. The catalyst operation during the “steady state” phase (the phase that the catalyst has reached its operating conditions and works normally) is examined. Further experiments are needed for different catalyst typed before the methods is proposed generally. It consists of 855 elements of catalyst inlet-outlet temperature difference (DT), hydrocarbons (HC), and carbon monoxide (CO) and carbon dioxide (CO2) emissions. The simulation: detects the values of HC, CO, CO2 using the DT as an input to our network forms a neural network. Results showed serious indications that artificial neural networks (or fuzzy logic control laws) could estimate the catalyst performance adequately depending their training process, if certain information about the catalyst system and the inputs and output of such system are known. In this study the “steady state” period experimental results are presented. In this paper the “steady state” period experimental results are presented.


2001 ◽  
Vol 11 (08) ◽  
pp. 2085-2095 ◽  
Author(s):  
JUNG-CHAO BAN ◽  
KAI-PING CHIEN ◽  
SONG-SUN LIN ◽  
CHENG-HSIUNG HSU

This investigation will describe the spatial disorder of one-dimensional Cellular Neural Networks (CNN). The steady state solutions of the one-dimensional CNN can be replaced as an iteration map which is one dimensional under certain parameters. Then, the maps are chaotic and the spatial entropy of the steady state solutions is a three-dimensional devil-staircase like function.


2011 ◽  
Vol 104 (5) ◽  
pp. 1048-1052 ◽  
Author(s):  
Adam Derenne ◽  
Holly Brown-Borg ◽  
Kathryn Feltman ◽  
Grant Corbett ◽  
Serena Lackman

Author(s):  
S. O. T. Ogaji ◽  
Y. G. Li ◽  
S. Sampath ◽  
R. Singh

Transient and steady state data may contain the same essential fault information but some faults have been shown to be more easily detectable from transient data because the transient records provide significant diagnostic content especially as the fault effects are magnified under transient. Various traditional and conventional techniques such as fault trees, fault matrixes, gas path analysis and its variants have been applied to gas path fault diagnosis of gas turbines. Recently, artificial intelligence techniques such as artificial neural networks (ANN) as well as optimization techniques such as genetic algorithm (GA) are being explored for fault diagnosis activities. In this paper, a novel approach to gas path fault diagnosis is proposed. The method involves the use of ANN with engine transient data. A set of nested neural networks designed to estimate independent parameter (efficiencies and flow capacities) changes due to faults within single or multiple components of a turbofan engine are presented. The approach involves classification and approximation type networks. Measurements from the engine are first assessed by a trained network and if a fault is diagnosed, are then classified into two groups — those originating from sensor faults and those from component faults, by another trained network. Other trained networks continue the fault isolation process and finally the magnitude of the fault(s) is quantified. A computer simulation of the process shows that results from a batched process of these networks can be obtained in less than three seconds. Four of the gas path components — intermediate pressure compressor (IPC), high pressure compressor (HPC), high pressure turbine (HPT) and low pressure turbine (LPT) — and measurements from eight sensors are considered. Sensor noise and bias are also considered in this analysis. The comparison of fault signatures from a steady state and transient process show that diagnosis with transient data can improve the accuracy of gas turbine fault diagnosis.


Sign in / Sign up

Export Citation Format

Share Document