Inhibition of nuclear translocation of notch intracellular domain (NICD) by diosgenin prevented atherosclerotic disease progression

Biochimie ◽  
2018 ◽  
Vol 148 ◽  
pp. 63-71 ◽  
Author(s):  
Ambika Binesh ◽  
Sivasithambaram Niranjali Devaraj ◽  
Halagowder Devaraj
Author(s):  
Takaya Shiraishi ◽  
Masahiro Sakaitani ◽  
Satoko Otsuguro ◽  
Katsumi Maenaka ◽  
Toshiharu Suzuki ◽  
...  

2020 ◽  
Author(s):  
Jacob J. Crow ◽  
Allan R. Albig

ABSTRACTNotch signaling is essential for multicellular life, regulating core functions such as cellular identity, differentiation, and fate. These processes require highly sensitive systems to avoid going awry, and one such regulatory mechanism is through Notch intracellular domain dimerization. Select Notch target genes contain sequence-paired sites (SPS); motifs in which two Notch transcriptional activation complexes can bind and interact through Notch’s ankyrin domain, resulting in enhanced transcriptional activation. This mechanism has been mostly studied through Notch1, and to date, the abilities of the other Notch family members have been left unexplored. Through the utilization of minimalized, SPS-driven luciferase assays, we were able to test the functional capacity of Notch dimers. Here we show that each family member is capable of dimerization-induced signaling, following the same stringent requirements as seen with Notch1. Interestingly, we identified a mechanical difference between canonical and cryptic SPSs, leading to differences in their dimerization-induced regulation. Finally, we profiled the Notch family members’ SPS gap distance preferences and found that they all prefer a 16-nucleotide gap, with little room for variation. In summary, this work highlights the potent and highly specific nature of Notch dimerization and refines the scope of this regulatory function.


Autophagy ◽  
2022 ◽  
pp. 1-10
Author(s):  
Gota Yoshida ◽  
Tsuyoshi Kawabata ◽  
Hyota Takamatsu ◽  
Shotaro Saita ◽  
Shuhei Nakamura ◽  
...  

Angiogenesis ◽  
2020 ◽  
Vol 23 (3) ◽  
pp. 493-513
Author(s):  
Esther Bridges ◽  
Helen Sheldon ◽  
Esther Kleibeuker ◽  
Evelyn Ramberger ◽  
Christos Zois ◽  
...  

2019 ◽  
Vol 12 (606) ◽  
pp. eaay2369 ◽  
Author(s):  
Sanchez M. Jarrett ◽  
Tom C. M. Seegar ◽  
Mark Andrews ◽  
Guillaume Adelmant ◽  
Jarrod A. Marto ◽  
...  

Canonical Notch signaling relies on regulated proteolysis of the receptor Notch to generate a nuclear effector that induces the transcription of Notch-responsive genes. In higher organisms, one Notch-responsive gene that is activated in many different cell types encodes the Notch-regulated ankyrin repeat protein (NRARP), which acts as a negative feedback regulator of Notch responses. Here, we showed that NRARP inhibited the growth of Notch-dependent T cell acute lymphoblastic leukemia (T-ALL) cell lines and bound directly to the core Notch transcriptional activation complex (NTC), requiring both the transcription factor RBPJ and the Notch intracellular domain (NICD), but not Mastermind-like proteins or DNA. The crystal structure of an NRARP-NICD1-RBPJ-DNA complex, determined to 3.75 Å resolution, revealed that the assembly of NRARP-NICD1-RBPJ complexes relied on simultaneous engagement of RBPJ and NICD1, with the three ankyrin repeats of NRARP extending the Notch1 ankyrin repeat stack. Mutations at the NRARP-NICD1 interface disrupted entry of the proteins into NTCs and abrogated feedback inhibition in Notch signaling assays in cultured cells. Forced expression of NRARP reduced the abundance of NICD in cells, suggesting that NRARP may promote the degradation of NICD. These studies establish the structural basis for NTC engagement by NRARP and provide insights into a critical negative feedback mechanism that regulates Notch signaling.


2019 ◽  
Vol 12 (5) ◽  
pp. 345-358 ◽  
Author(s):  
Zhiyuan Luo ◽  
Lili Mu ◽  
Yue Zheng ◽  
Wenchen Shen ◽  
Jiali Li ◽  
...  

Abstract The release and nuclear translocation of the intracellular domain of Notch receptor (NICD) is the prerequisite for Notch signaling-mediated transcriptional activation. NICD is subjected to various posttranslational modifications including ubiquitination. Here, we surprisingly found that NUMB proteins stabilize the intracellular domain of NOTCH1 receptor (N1ICD) by regulating the ubiquitin–proteasome machinery, which is independent of NUMB’s role in modulating endocytosis. BAP1, a deubiquitinating enzyme (DUB), was further identified as a positive N1ICD regulator, and NUMB facilitates the association between N1ICD and BAP1 to stabilize N1ICD. Intriguingly, BAP1 stabilizes N1ICD independent of its DUB activity but relying on the BRCA1-inhibiting function. BAP1 strengthens Notch signaling and maintains stem-like properties of cortical neural progenitor cells. Thus, NUMB enhances Notch signaling by regulating the ubiquitinating activity of the BAP1–BRCA1 complex.


2004 ◽  
Vol 25 ◽  
pp. S174
Author(s):  
Ellen Kilger ◽  
Gabriele Vacun ◽  
Monika Palchaudhuri ◽  
Bernd Sommer ◽  
Mathias Jucker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document