Prediction of atherosclerotic disease progression combining computational modelling with machine learning

Author(s):  
Antonis I. Sakellarios ◽  
Vasileios C. Pezoulas ◽  
Christos Bourantas ◽  
Katerina K. Naka ◽  
Lampros K. Michalis ◽  
...  
2020 ◽  
Vol 20 (9) ◽  
pp. 720-730
Author(s):  
Iker Montes-Bageneta ◽  
Urtzi Akesolo ◽  
Sara López ◽  
Maria Merino ◽  
Eneritz Anakabe ◽  
...  

Aims: Computational modelling may help us to detect the more important factors governing this process in order to optimize it. Background: The generation of hazardous organic waste in teaching and research laboratories poses a big problem that universities have to manage. Methods: In this work, we report on the experimental measurement of waste generation on the chemical education laboratories within our department. We measured the waste generated in the teaching laboratories of the Organic Chemistry Department II (UPV/EHU), in the second semester of the 2017/2018 academic year. Likewise, to know the anthropogenic and social factors related to the generation of waste, a questionnaire has been utilized. We focused on all students of Experimentation in Organic Chemistry (EOC) and Organic Chemistry II (OC2) subjects. It helped us to know their prior knowledge about waste, awareness of the problem of separate organic waste and the correct use of the containers. These results, together with the volumetric data, have been analyzed with statistical analysis software. We obtained two Perturbation-Theory Machine Learning (PTML) models including chemical, operational, and academic factors. The dataset analyzed included 6050 cases of laboratory practices vs. practices of reference. Results: These models predict the values of acetone waste with R2 = 0.88 and non-halogenated waste with R2 = 0.91. Conclusion: This work opens a new gate to the implementation of more sustainable techniques and a circular economy with the aim of improving the quality of university education processes.


RMD Open ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. e001524
Author(s):  
Nina Marijn van Leeuwen ◽  
Marc Maurits ◽  
Sophie Liem ◽  
Jacopo Ciaffi ◽  
Nina Ajmone Marsan ◽  
...  

ObjectivesTo develop a prediction model to guide annual assessment of systemic sclerosis (SSc) patients tailored in accordance to disease activity.MethodsA machine learning approach was used to develop a model that can identify patients without disease progression. SSc patients included in the prospective Leiden SSc cohort and fulfilling the ACR/EULAR 2013 criteria were included. Disease progression was defined as progression in ≥1 organ system, and/or start of immunosuppression or death. Using elastic-net-regularisation, and including 90 independent clinical variables (100% complete), we trained the model on 75% and validated it on 25% of the patients, optimising on negative predictive value (NPV) to minimise the likelihood of missing progression. Probability cutoffs were identified for low and high risk for disease progression by expert assessment.ResultsOf the 492 SSc patients (follow-up range: 2–10 years), disease progression during follow-up was observed in 52% (median time 4.9 years). Performance of the model in the test set showed an AUC-ROC of 0.66. Probability score cutoffs were defined: low risk for disease progression (<0.197, NPV:1.0; 29% of patients), intermediate risk (0.197–0.223, NPV:0.82; 27%) and high risk (>0.223, NPV:0.78; 44%). The relevant variables for the model were: previous use of cyclophosphamide or corticosteroids, start with immunosuppressive drugs, previous gastrointestinal progression, previous cardiovascular event, pulmonary arterial hypertension, modified Rodnan Skin Score, creatine kinase and diffusing capacity for carbon monoxide.ConclusionOur machine-learning-assisted model for progression enabled us to classify 29% of SSc patients as ‘low risk’. In this group, annual assessment programmes could be less extensive than indicated by international guidelines.


2019 ◽  
Vol 325 ◽  
pp. 101-112 ◽  
Author(s):  
Gautham P. Das ◽  
Philip J. Vance ◽  
Dermot Kerr ◽  
Sonya A. Coleman ◽  
Thomas M. McGinnity ◽  
...  

Author(s):  
Katya Pertsova

This chapter aims to introduce readers not familiar with computational modelling to some approaches and issues in the formal study of learnability, and the relevance of this field to theoretical linguistics and inflectional morphology in particular. After a general overview, the chapter highlights some of the obstacles in learning inflection. Inflection, considered separately from other components of language, is relatively restricted in its expressive power, which should make it easier to learn than syntax. However, inflectional systems are full of irregularities and mismatches between different levels of structure, and such irregularities make learning difficult. Overall, it is concluded that linguistically interesting proposals for machine learning of inflection should provide explanations for the nature and extent of irregularities and for the specific patterns of language acquisition and language change.


2018 ◽  
Vol 14 (5) ◽  
pp. 20170660 ◽  
Author(s):  
Ruth E. Baker ◽  
Jose-Maria Peña ◽  
Jayaratnam Jayamohan ◽  
Antoine Jérusalem

Ninety per cent of the world's data have been generated in the last 5 years ( Machine learning: the power and promise of computers that learn by example . Report no. DES4702. Issued April 2017. Royal Society). A small fraction of these data is collected with the aim of validating specific hypotheses. These studies are led by the development of mechanistic models focused on the causality of input–output relationships. However, the vast majority is aimed at supporting statistical or correlation studies that bypass the need for causality and focus exclusively on prediction. Along these lines, there has been a vast increase in the use of machine learning models, in particular in the biomedical and clinical sciences, to try and keep pace with the rate of data generation. Recent successes now beg the question of whether mechanistic models are still relevant in this area. Said otherwise, why should we try to understand the mechanisms of disease progression when we can use machine learning tools to directly predict disease outcome?


PLoS ONE ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. e0208141 ◽  
Author(s):  
Monica A. Konerman ◽  
Lauren A. Beste ◽  
Tony Van ◽  
Boang Liu ◽  
Xuefei Zhang ◽  
...  

2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e17554-e17554
Author(s):  
Ioana Danciu ◽  
Samantha Erwin ◽  
Greeshma Agasthya ◽  
Tate Janet ◽  
Benjamin McMahon ◽  
...  

e17554 Background: The ability to understand and predict at the time of diagnosis the trajectories of prostate cancer patients is critical for deciding the appropriate treatment plan. Evidence-based approaches for outcome prediction include predictive machine learning algorithms that harness health record data. Methods: All our analyses used the Veterans Affairs Clinical Data Warehouse (CDW). We included all individuals with a non-metastatic (early stage) prostate cancer diagnosis between 2002 and 2017 as documented in the CDW cancer registry (N = 111351). Our predictors were demographics (age at diagnosis, race), disease staging parameters abstracted at diagnosis ( Stage grouping AJCC, Gleason score, SEER summary stage) and prostate specific antigen (PSA) laboratory values in the last 5 years prior to diagnosis (last value, the value before last, average, minimum, maximum, rate of the change of the last 2 PSAs and density). The predicted outcome was disease progression at 2 years (N = 3469) and 5 years (N = 6325) defined as metastasis - taking either Abiraterone, Sipuleucel-T, Enzalutamide or Radium 223, registry cancer related death or PSA > 50. We used 4 different machine learning classifiers to train prediction models: random forest, k-nearest neighbor, decision trees, and xgboost all with hyper parameter optimization. For testing, we used two approaches: (1) 20% sample held out at the beginning of the study, and (2) stratified test/train split on the remaining data. Results: The table below shows the performance of the best classifier, xgboost. The top five predictors of disease progression were the last PSA, Gleason Score, maximum PSA, age at diagnosis, and SEER summary stage. The last PSA had a significantly higher contribution than the other predictors. More than one PSA value is important for prediction, emphasizing the need for investigating the PSA trajectory in the period before diagnosis. The models are overall very robust going from outcome at 2 years compared to 5 years. Conclusions: A machine learning based xgboost classifier can be integrated in clinical decision support at diagnosis, to robustly predict disease progression at 2 and 5 years. [Table: see text]


Sign in / Sign up

Export Citation Format

Share Document