Do forests treated by partial cutting provide growth conditions similar to old-growth forests for epiphytic lichens?

2013 ◽  
Vol 159 ◽  
pp. 458-467 ◽  
Author(s):  
Catherine Boudreault ◽  
Darwyn Coxson ◽  
Yves Bergeron ◽  
Susan Stevenson ◽  
Mathieu Bouchard
Herzogia ◽  
2015 ◽  
Vol 28 (1) ◽  
pp. 104-126 ◽  
Author(s):  
Jan Vondrák ◽  
Jiří Malíček ◽  
Jaroslav Šoun ◽  
Václav Pouska

2012 ◽  
Vol 42 (5) ◽  
pp. 899-907 ◽  
Author(s):  
Tuomas Aakala ◽  
Shawn Fraver ◽  
Brian J. Palik ◽  
Anthony W. D’Amato

Characterizing the spatial distribution of tree mortality is critical to understanding forest dynamics, but empirical studies on these patterns under old-growth conditions are rare. This rarity is due in part to low mortality rates in old-growth forests, the study of which necessitates long observation periods, and the confounding influence of tree in-growth during such time spans. Here, we studied mortality of red pine ( Pinus resinosa Ait.) in five old-growth stands in Minnesota, USA, demonstrating the use of preexisting information of cohort age structures to account for in-growth after the most recent cohort establishment. Analyses of spatial point patterns, using both Ripley’s K-function and the pair correlation function, showed that tree mortality was essentially a random process, without evidence of contagious mortality patterns that are often expected for old-growth forests. Our analyses further demonstrated in practice that the distribution of dead trees may differ from that of the tree mortality events, which are constrained to occur within the initial distribution, and how mortality patterns can shape the spatial distribution of mature living trees, often attributed to aggregated regeneration patterns. These findings emphasize the need to disentangle the influence of the initial distribution of trees from that of actual tree mortality events.


2008 ◽  
Vol 140 (4) ◽  
pp. 437-452 ◽  
Author(s):  
Christopher M. Buddle ◽  
David P. Shorthouse

AbstractTwo large-scale forestry experiments, in Quebec (Sylviculture et aménagement forestiers écosystémique (SAFE)) and Alberta (Ecosystem Management by Emulating Natural Disturbance (EMEND)), were established in the late 1990s to test the effects of alternative silvicultural strategies (e.g., partial cutting) on biodiversity in northern boreal forests. We collected spiders in pitfall traps 2 years after the application of partial-cutting treatments in deciduous stands at EMEND and 6 years after similar treatments in deciduous stands at SAFE. Although we are aware of the challenges imposed by disparate locations and whole-scale experimental methods, our objective was to compare the effects of partial cutting on spider assemblages (diversity and community composition), and in doing so, to formulate a few general statements. Overall, 98 species (6107 individuals) were collected from Alberta and 86 species (3414 individuals) from Quebec. Of these, 44 species were common to both regions. Ordination and indicator-species analyses revealed a distinct effect of geographic separation: the spider assemblages in deciduous stands within the boreal plains ecoregion of Alberta and the boreal shield in Quebec were distinct. However, the effects of partial cutting on spider assemblages within each project were similar: removal of 25%–33% of trees shifted a characteristic old-growth fauna toward one more typical of clearcuts. Indicator-species analysis also revealed the dominance of wolf spider (Lycosidae) species in clearcuts within both experiments and we present evidence that clear-cutting homogenizes spider assemblages. Old-growth forests contain spider faunas that are easily disrupted by moderate partial cutting. In the face of intense harvesting practices, managing for the maintenance of biodiversity and conservation of spider faunas in northern forests will require retention of old-growth forests.


Forests ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 27
Author(s):  
Giorgio Brunialti ◽  
Paolo Giordani ◽  
Sonia Ravera ◽  
Luisa Frati

(1) Research Highlights: The work studied the beta diversity patterns of epiphytic lichens as a function of their reproductive strategies in old-growth and non-old growth forests from the Mediterranean area. (2) Background and Objectives: The reproductive strategies of lichens can drive the dispersal and distribution of species assemblages in forest ecosystems. To further investigate this issue, we analyzed data on epiphytic lichen diversity collected from old-growth and non-old growth forest sites (36 plots) located in Cilento National Park (South Italy). Our working hypothesis was that the dispersal abilities due to the different reproductive strategies drove species beta diversity depending on forest age and continuity. We expected a high turnover for sexually reproducing species and high nestedness for vegetative ones. We also considered the relationship between forest continuity and beta diversity in terms of species rarity. (3) Materials and Methods: we used the Bray–Curtis index of dissimilarity to partition lichen diversity into two components of beta diversity for different subsets (type of forest, reproductive strategy, and species rarity). (4) Results: The two forest types shared most of the common species and did not show significant differences in alpha and gamma diversity. The turnover of specific abundance was the main component of beta diversity, and was significantly greater for sexually reproducing species as compared to vegetative ones. These latter species had also the least turnover and greater nestedness in old-growth forests. Rare species showed higher turnover than common ones. (5) Conclusions: Our results suggest that sexually reproducing lichen species always have high turnover, while vegetative species tend to form nested assemblages, especially in old-growth forests. The rarity level contributes to the species turnover in lichen communities. Contrary to what one might expect, the differences between old-growth and non-old growth forests are not strong.


Nova Hedwigia ◽  
2013 ◽  
Vol 96 (3) ◽  
pp. 367-381 ◽  
Author(s):  
Giorgio Brunialti ◽  
Sonia Ravera ◽  
Luisa Frati

2000 ◽  
Vol 10 (3) ◽  
pp. 789-799 ◽  
Author(s):  
Stephen C. Sillett ◽  
Bruce McCune ◽  
Jerilynn E. Peck ◽  
Thomas R. Rambo ◽  
Andrea Ruchty

2011 ◽  
Author(s):  
Melinda Moeur ◽  
Janet L. Ohmann ◽  
Robert E. Kennedy ◽  
Warren B. Cohen ◽  
Matthew J. Gregory ◽  
...  

2000 ◽  
Author(s):  
Michael H. McClellan ◽  
Douglas N. Swanston ◽  
Paul E. Hennon ◽  
Robert L. Deal ◽  
Toni L. de Santo ◽  
...  

2012 ◽  
Vol 163 (6) ◽  
pp. 240-246 ◽  
Author(s):  
Thomas A. Nagel ◽  
Jurij Diaci ◽  
Dusan Rozenbergar ◽  
Tihomir Rugani ◽  
Dejan Firm

Old-growth forest reserves in Slovenia: the past, present, and future Slovenia has a small number of old-growth forest remnants, as well as many forest reserves approaching old-growth conditions. In this paper, we describe some of the basic characteristics of these old-growth remnants and the history of their protection in Slovenia. We then trace the long-term development of research in these old-growth remnants, with a focus on methodological changes. We also review some of the recent findings from old-growth research in Slovenia and discuss future research needs. The conceptual understanding of how these forests work has slowly evolved, from thinking of them in terms of stable systems to more dynamic and unpredictable ones due to the influence of natural disturbances and indirect human influences. In accordance with this thinking, the methods used to study old-growth forests have changed from descriptions of stand structure to studies that address natural processes and ecosystem functions.


Sign in / Sign up

Export Citation Format

Share Document