scholarly journals Cold tolerance of Trissolcus japonicus and T. cultratus, potential biological control agents of Halyomorpha halys, the brown marmorated stink bug

2017 ◽  
Vol 107 ◽  
pp. 11-20 ◽  
Author(s):  
Erica Nystrom Santacruz ◽  
Robert Venette ◽  
Christine Dieckhoff ◽  
Kim Hoelmer ◽  
Robert L. Koch
2019 ◽  
Vol 112 (5) ◽  
pp. 2077-2084 ◽  
Author(s):  
David M Lowenstein ◽  
Heather Andrews ◽  
Anthony Mugica ◽  
Nik G Wiman

Abstract The spread of adventive Trissolcus japonicus (Ashmead, 1904) populations in North America is anticipated to increase biological control of Halyomorpha halys (Stål; Hemiptera: Pentatomidae), the brown marmorated stink bug. In an agricultural context, biological control will succeed if it can be integrated in an environment with insecticide applications. We investigated T. japonicus compatibility with nine conventional and organic insecticides commonly used in integrated pest management in perennial crops. Through evaluating mortality and longevity in field and laboratory trials, we determined that T. japonicus fares poorly when exposed to residues of neonicotinoids and pyrethroids. Spinosad resulted in the highest percentage of T. japonicus mortality, 100% in the laboratory and 97% in a field trial. The anthranilic diamide, chlorantraniliprole, had the lowest lethality, with no differences compared to an untreated control. Trissolcus japonicus survived insecticide applications in hazelnut orchards, and over 50% of wasps remained alive after contact with the anthranilic diamides, chlorantraniliprole and cyantraniliprole, the biopesticide Chromobacterium, and an untreated control. Our results indicate that T. japonicus is unlikely to survive and parasitize H. halys in settings that coincide with broad-spectrum insecticide application. Future T. japonicus redistributions could continue in orchards treated with anthranilic diamides and Chromobacterium. As H. halys is a landscape-level pest, orchards may also benefit from biological control if T. japonicus are released in unsprayed areas adjacent to agriculture and in urban sites.


Insects ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 581
Author(s):  
Valerie Caron ◽  
Tania Yonow ◽  
Cate Paull ◽  
Elijah J. Talamas ◽  
Gonzalo A. Avila ◽  
...  

The brown marmorated stink bug Halyomorphahalys (Stål) (Hemiptera: Pentatomidae) is native to Northeast Asia, but has become a serious invasive species in North America and Europe, causing major damage to crops. While it has not established itself in Australia, it has been intercepted at the border several times, indicating that future incursions and establishment are a case of when, not if. Biological control is one of the few control options for this species and will be important for managing H.halys should it become established in Australia. Prioritizing species that could be used as biological control agents would ensure Australia is prepared. This study summarizes the literature on natural enemies of H. halys in its native and invaded ranges and prioritizes potential biological control agents of H.halys that could be used in Australia. Two egg parasitoid species were identified: Trissolcusjaponicus (Ashmead) and Trissolcusmitsukurii (Ashmead) (Hymenoptera: Scelionidae). Future efforts to develop biological control should focus on T. mitsukurii, as it is already present in Australia. However, little is known about this species and further work is required to: (1) assess its potential effectiveness in parasitizing H. halys, (2) determine its current distribution and (3) host range in Australia.


2019 ◽  
Vol 73 ◽  
pp. 153-200 ◽  
Author(s):  
Francesco Tortorici ◽  
Elijah J. Talamas ◽  
Silvia T. Moraglio ◽  
Marco G. Pansa ◽  
Maryam Asadi-Farfar ◽  
...  

Accurate identification of parasitoids is crucial for biological control of the invasive brown marmorated stink bug, Halyomrpha halys (Stål). A recent work by Talamas et al. (2017) revised the Palearctic fauna of Trissolcus Ashmead, egg-parasitoids of stink bugs, and treated numerous species as junior synonyms of T. semistriatus (Nees von Esenbeck). In the present paper, we provide a detailed taxonomic history and treatment of T. semistriatus and the species treated as its synonyms by Talamas et al. (2017) based on examination of primary types, molecular analyses and mating experiments. Trissolcus semistriatus, T. belenus (Walker), T. colemani (Crawford), and T. manteroi (Kieffer) are here recognized as valid and a key to species is provided. The identification tools provided here will facilitate the use of Trissolcus wasps as biological control agents and as the subject of ecological studies.


2019 ◽  
Vol 29 (1) ◽  
Author(s):  
Elif Tozlu ◽  
Islam Saruhan ◽  
Göksel Tozlu ◽  
Recep Kotan ◽  
Fatih Dadaşoğlu ◽  
...  

AbstractThe brown marmorated stink bug, Halyomorpha halys (Stål, 1855) (Hemiptera: Pentatomidae), is an invasive harmful pest species due to its economic losses. Its wide host range and continuous movement make its control difficult with insecticides. Biological control has recently gained importance due to the negative aspects of chemical control. The study evaluated the biological control tools by testing the entomopathogens against the pest by 11 bacteria strains and 1 fungal isolate. Brevibacillus, Bacillus, Pantoea, Vibrio, Pseudomonas, and Beauveria were tested against the nymphs of H. halys under controlled conditions. All applied entomopathogens had potentials for controlling H. halys. Mortality rates of 75 and 100% were obtained by the bacteria strains and 76.19% by the fungus, B. bassiana. Successfully reaching a 100% control rate, the bacterial isolates of the Bacillus cereus GC subgroup B and Pantoea agglomerans GC subgroup were recorded to have a greater potential than the others.


2018 ◽  
Vol 91 (4) ◽  
pp. 1335-1343 ◽  
Author(s):  
Shi-Yong Yang ◽  
Hai-Xia Zhan ◽  
Feng Zhang ◽  
Dirk Babendreier ◽  
Yong-Zhi Zhong ◽  
...  

2021 ◽  
Vol 6 (8) ◽  
pp. 2307-2309
Author(s):  
Francesco Nardi ◽  
Claudio Cucini ◽  
Elena Cardaioli ◽  
Francesco Paoli ◽  
Giuseppino Sabbatini Peverieri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document