Bioluminescence imaging of calvarial bone repair using bone marrow and adipose tissue-derived mesenchymal stem cells

Biomaterials ◽  
2008 ◽  
Vol 29 (4) ◽  
pp. 427-437 ◽  
Author(s):  
Irene R. Dégano ◽  
Marta Vilalta ◽  
Juli R. Bagó ◽  
Annette M. Matthies ◽  
Jeffrey A. Hubbell ◽  
...  
2012 ◽  
Vol 84 (3) ◽  
pp. 841-851 ◽  
Author(s):  
Betânia S. Monteiro ◽  
Napoleão M. Argôlo-Neto ◽  
Nance B. Nardi ◽  
Pedro C. Chagastelles ◽  
Pablo H. Carvalho ◽  
...  

Mesenchymal stem cells (MSC) are present in specialized niches in perivascular regions of adult tissues and are able to differentiate into various cell types, such as those committed to repairing. Bone marrow derived MSC from eight young mice C57BL/ 6 gfp+ were expanded in culture for repairing critical defects in calvarial bone produced in twenty-four young isogenic adult C57BL/6 mice. The animals were subjected to a cranial defect of 6.0mm diameter and divided into two equal experimental groups. Control group did not receive any treatment and the treated group received a MSC pellet containing 1.0 x 10(7) cells/mL into the defects. The group treated with MSC showed increased angiogenesis and amount of new bone deposited on the defect limits than that observed in the control group. The results demonstrated that transplantation of bone marrow-derived MSC of C57BL/6 gfp+ mice to bone critical defects produced in mice calvarial contributes positively to the bone repair process. MSC presets ability to influence the correct functioning of osteoblasts, increases the amount of mobilized cells for the repairing process, speeds up growth, and increases deposition of bone matrix.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Florent Montespan ◽  
Frédéric Deschaseaux ◽  
Luc Sensébé ◽  
Edgardo D. Carosella ◽  
Nathalie Rouas-Freiss

Mesenchymal stem cells (MSCs) are multipotent cells that can be obtained from several sources such as bone marrow and adipose tissue. Depending on the culture conditions, they can differentiate into osteoblasts, chondroblasts, adipocytes, or neurons. In this regard, they constitute promising candidates for cell-based therapy aimed at repairing damaged tissues. In addition, MSCs display immunomodulatory properties through the expression of soluble factors including HLA-G. We here analyse both immunogenicity and immunosuppressive capacity of MSCs derived from bone marrow and adipose tissue before and after osteodifferentiation. Results show that HLA-G expression is maintained after osteodifferentiation and can be boosted in inflammatory conditions mimicked by the addition of IFN-γand TNF-α. Both MSCs and osteodifferentiated MSCs are hypoimmunogenic and exert immunomodulatory properties in HLA-mismatched settings as they suppress T cell alloproliferation in mixed lymphocyte reactions. Finally, addition of biomaterials that stimulate bone tissue formation did not modify MSC immune properties. As MSCs combine both abilities of osteoregeneration and immunomodulation, they may be considered as allogenic sources for the treatment of bone defects.


2019 ◽  
Vol 70 (6) ◽  
pp. 1983-1987
Author(s):  
Cristian Trambitas ◽  
Anca Maria Pop ◽  
Alina Dia Trambitas Miron ◽  
Dorin Constantin Dorobantu ◽  
Flaviu Tabaran ◽  
...  

Large bone defects are a medical concern as these are often unable to heal spontaneously, based on the host bone repair mechanisms. In their treatment, bone tissue engineering techniques represent a promising approach by providing a guide for osseous regeneration. As bioactive glasses proved to have osteoconductive and osteoinductive properties, the aim of our study was to evaluate by histologic examination, the differences in the healing of critical-sized calvarial bone defects filled with bioactive glass combined with adipose-derived mesenchymal stem cells, compared to negative controls. We used 16 male Wistar rats subjected to a specific protocol based on which 2 calvarial bone defects were created in each animal, one was filled with Bon Alive S53P4 bioactive glass and adipose-derived stem cells and the other one was considered control. At intervals of one week during the following month, the animals were euthanized and the specimens from bone defects were histologically examined and compared. The results showed that this biomaterial was biocompatible and the first signs of osseous healing appeared in the third week. Bone Alive S53P4 bioactive glass could be an excellent bone substitute, reducing the need of bone grafts.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pegah Nammian ◽  
Seyedeh-Leili Asadi-Yousefabad ◽  
Sajad Daneshi ◽  
Mohammad Hasan Sheikhha ◽  
Seyed Mohammad Bagher Tabei ◽  
...  

Abstract Introduction Critical limb ischemia (CLI) is the most advanced form of peripheral arterial disease (PAD) characterized by ischemic rest pain and non-healing ulcers. Currently, the standard therapy for CLI is the surgical reconstruction and endovascular therapy or limb amputation for patients with no treatment options. Neovasculogenesis induced by mesenchymal stem cells (MSCs) therapy is a promising approach to improve CLI. Owing to their angiogenic and immunomodulatory potential, MSCs are perfect candidates for the treatment of CLI. The purpose of this study was to determine and compare the in vitro and in vivo effects of allogeneic bone marrow mesenchymal stem cells (BM-MSCs) and adipose tissue mesenchymal stem cells (AT-MSCs) on CLI treatment. Methods For the first step, BM-MSCs and AT-MSCs were isolated and characterized for the characteristic MSC phenotypes. Then, femoral artery ligation and total excision of the femoral artery were performed on C57BL/6 mice to create a CLI model. The cells were evaluated for their in vitro and in vivo biological characteristics for CLI cell therapy. In order to determine these characteristics, the following tests were performed: morphology, flow cytometry, differentiation to osteocyte and adipocyte, wound healing assay, and behavioral tests including Tarlov, Ischemia, Modified ischemia, Function and the grade of limb necrosis scores, donor cell survival assay, and histological analysis. Results Our cellular and functional tests indicated that during 28 days after cell transplantation, BM-MSCs had a great effect on endothelial cell migration, muscle restructure, functional improvements, and neovascularization in ischemic tissues compared with AT-MSCs and control groups. Conclusions Allogeneic BM-MSC transplantation resulted in a more effective recovery from critical limb ischemia compared to AT-MSCs transplantation. In fact, BM-MSC transplantation could be considered as a promising therapy for diseases with insufficient angiogenesis including hindlimb ischemia.


2009 ◽  
Vol 87 (5) ◽  
pp. 642-652 ◽  
Author(s):  
Koen E. A. van der Bogt ◽  
Sonja Schrepfer ◽  
Jin Yu ◽  
Ahmad Y. Sheikh ◽  
Grant Hoyt ◽  
...  

2011 ◽  
Vol 75 (9) ◽  
pp. 2060-2061 ◽  
Author(s):  
Yikuan Chen ◽  
Gang Wang ◽  
Lingfang Zeng

2005 ◽  
Vol 1049 (1) ◽  
pp. 97-106 ◽  
Author(s):  
CARL A. GREGORY ◽  
WILLIAM G. GUNN ◽  
EMIGDIO REYES ◽  
ANGELA J. SMOLARZ ◽  
JAMES MUNOZ ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document