Bi-phasic hydrolysis of corncobs for the extraction of total sugars and ethanol production using inhibitor resistant and thermotolerant yeast, Pichia kudriavzevii

2021 ◽  
Vol 153 ◽  
pp. 106230
Author(s):  
Bindu Sunkar ◽  
Bhima Bhukya
2018 ◽  
Vol 49 (2) ◽  
pp. 378-391 ◽  
Author(s):  
Nuttaporn Chamnipa ◽  
Sudarat Thanonkeo ◽  
Preekamol Klanrit ◽  
Pornthap Thanonkeo

2020 ◽  
Vol 14 (4) ◽  
pp. 121-128
Author(s):  
DAROJATUL ULYA ◽  
◽  
RIKAINDRI ASTUTI ◽  
ANJA MERYANDINI ◽  
◽  
...  

Sugar Tech ◽  
2021 ◽  
Author(s):  
L. E. Díaz-Nava ◽  
M. G. Aguilar-Uscanga ◽  
B. Ortiz-Muñiz ◽  
N. Montes-García ◽  
J. M. Domínguez ◽  
...  

Author(s):  
Juliana Alves Araújo ◽  
Thiago Lucas de Abreu-Lima ◽  
Solange Cristina Carreiro

Ethanol production from lignocellulosic biomass is of economic interest due to the pressure to reduce fossil fuels consumption and land use for non-edible crops. Xylose is one of the main sugars obtained by hydrolysis of hemicellulose fraction of biomass, but industrial yeasts cannot ferment it. This work aimed to select, characterize and identify xylose-fermenting yeasts from Brazilian microorganisms collections with potential use in ethanol production. Xylose assimilation was tested by replica plating, and fermentation was tested with Durham tubes. Xylose-fermenting strains had their fermentative capacity quantified and compared to a reference strain (Scheffersomyces stipitis UFMG-IMH 43.2) and were identified by molecular techniques. Three strains isolated from plant exudates were able to ferment xylose and showed fermentative parameters similar to the reference strain. Two strains were identified as Candida parapsilosis and one was identified as Meyerozyma guilliermondii. The findings show the potential biotechnological use of these microorganisms.


2014 ◽  
Vol 40 (2) ◽  
pp. 103-113
Author(s):  
Marcin Wołczyński ◽  
Marta Janosz-Rajczyk

Abstract The presented results of research on the effectiveness of enzymatic hydrolysis of lignocellulosic waste, depending on their initial depolymerisation in alkaline medium were considered in the context of the possibility of their further use in the fermentation media focused on the recovery of energy in the form of molecular hydrogen. The aim of this study was to determine the appropriate dose and concentration of a chemical reagent, whose efficiency would be high enough to cause decomposition of the complex, but without an excessive production of by-products which could adversely affect the progress and effectiveness of the enzymatic hydrolysis and fermentation. The effect of treatment on physical-chemical changes of homogenates’ properties such as pH, COD, the concentration of monosaccharide and total sugars and the concentration of total suspended solids and volatile suspended solids was determined. The enzymatic decomposition of lignocellulosic complex was repeatedly more efficient if the sample homogenates were subjected to an initial exposure to NaOH. The degree of conversion of complex sugars into simple sugars during enzymatic hydrolysis of homogenates pre-alkalized to pH 11.5 and 12.0 was 83.3 and 84.2% respectively, which should be sufficient for efficient hydrogen fermentation process.


Sign in / Sign up

Export Citation Format

Share Document