plant exudates
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 18)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Vol 9 (7) ◽  
pp. 1462
Author(s):  
Anna Barra Caracciolo ◽  
Valentina Terenzi

The rhizosphere is a microhabitat where there is an intense chemical dialogue between plants and microorganisms. The two coexist and develop synergistic actions, which can promote plants’ functions and productivity, but also their capacity to respond to stress conditions, including heavy metal (HM) contamination. If HMs are present in soils used for agriculture, there is a risk of metal uptake by edible plants with subsequent bioaccumulation in humans and animals and detrimental consequences for their health. Plant productivity can also be negatively affected. Many bacteria have defensive mechanisms for resisting heavy metals and, through various complex processes, can improve plant response to HM stress. Bacteria-plant synergic interactions in the rhizosphere, as a homeostatic ecosystem response to HM disturbance, are common in soil. However, this is hard to achieve in agroecosystems managed with traditional practices, because concentrating on maximizing crop yield does not make it possible to establish rhizosphere interactions. Improving knowledge of the complex interactions mediated by plant exudates and secondary metabolites can lead to nature-based solutions for plant health in HM contaminated soils. This paper reports the main ecotoxicological effects of HMs and the various compounds (including several secondary metabolites) produced by plant-microorganism holobionts for removing, immobilizing and containing toxic elements.


2021 ◽  
Vol 32 (2) ◽  
pp. 120-124
Author(s):  
Abdelkrim Rebiai ◽  
Bachir Ben Seghir ◽  
Hadia Hemmami ◽  
Soumeia Zeghoud ◽  
Mohamed Lakhder Belfar ◽  
...  

Abstract Propolis is a resinous material collected by bees from various plant exudates, rich in well-known phenolic compounds, such as phenolic acids, that are important to health. Extracts of propolis are very complex matrices that are hard to test. The purpose of this study was to characterize some of the propolis phenolics that were collected from five different districts in Algeria. The High-Performance Liquid Chromatography (HPLC), a modern quantitative method, has been adopted to identify the phenolic acids. Moreover, total phenolic content of four different phenolic acids were identified, with the most abundant being chlorogenic acid, followed by caffeic acid, gallic acid, and p-coumaric acid, the obtained ratios from phenolic acids being in the range of 52.193 to 148.151 μg/g, 0.043 to 7.128 mg/g, 0.328 to 0.440 mg/g and 0.328 to 0.440 mg/g, respectively. Overall, our analysis indicates that all the samples of propolis tested are healthy sources of phenolic acids and the significant differences in the concentrations of the acids were observed for propolis samples from north and south of Algeria. It is probably the effect of different conditions of the collection of the resin and secrets by bees.


2021 ◽  
Vol 19 (5) ◽  
pp. 282-282
Author(s):  
John F Mull ◽  
Sam Zeveloff
Keyword(s):  

Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 668
Author(s):  
Justine Oma Angadam ◽  
Seteno Karabo Obed Ntwampe ◽  
Boredi Silas Chidi ◽  
Jun Wei Lim ◽  
Vincent Ifeanyi Okudoh

Human endeavors generate a significant quantity of bio-waste, even lignocellulosic waste, due to rapid industrialization and urbanization, and can cause pollution to aquatic ecosystems, and contribute to detrimental animal and human health because of the toxicity of consequent hydrolysis products. This paper contributes to a new understanding of the lignocellulosic waste bio-pretreatment process from a literature review, which can provide better biorefinery operational outcomes. The simultaneous partial biological lignin, cellulose and hemicellulose lysis, i.e., simultaneous semi-lignino-holocellulolysis, is aimed at suggesting that when ligninolysis ensues, holocellulolysis is simultaneously performed for milled lignocellulosic waste instead of having a sequential process of initial ligninolysis and subsequent holocellulolysis as is currently the norm. It is presumed that such a process can be solely performed by digestive enzyme cocktails from the monkey cups of species such as Nepenthes, white and brown rot fungi, and some plant exudates. From the literature review, it was evident that the pretreatment of milled lignocellulosic waste is largely incomplete, and ligninolysis including holocellulolysis ensues simultaneously when the waste is milled. It is further proposed that lignocellulosic waste pretreatment can be facilitated using an environmentally friendly approach solely using biological means. For such a process to be understood and applied on an industrial scale, an interdisciplinary approach using process engineering and microbiology techniques is required.


2021 ◽  
pp. 265-284
Author(s):  
Yekti Maryani ◽  
Rohlan Rogomulyo
Keyword(s):  

Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 22
Author(s):  
Daniel Severus Dezmirean ◽  
Claudia Paşca ◽  
Adela Ramona Moise ◽  
Otilia Bobiş

Propolis is a resinous mixture, made by the honeybees from substances collected from tree or other plant buds, plant exudates, or resins found in the stem, branches, or leaves of different plants. The geographical origin of propolis is given by plant sources from respective areas. Different studies have classified this bee product according to the vegetal material from the same areas. Poplar-type propolis has the widest spread in the world, in the temperate zones from Europe, Asia, or North America. The name is given by the main plant source from where the bees are collecting the resins, although other vegetal sources are present in the mentioned areas. Different Pinus spp., Prunus spp., Acacia spp. and also Betula pendula, Aesculus hippocastanum, and Salix alba are important sources of resins for “poplar-type” propolis. The aim of this review is to identify the vegetal material’s chemical composition and activities of plant resins and balms used by the bees to produce poplar-type propolis and to compare it with the final product from similar geographical regions. The relevance of this review is to find the similarities between the chemical composition and properties of plant sources and propolis. The latest determination methods of bioactive compounds from plants and propolis are also reviewed.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
İbrahim Kahramanoğlu ◽  
Volkan Okatan ◽  
Chunpeng Wan

Propolis, also called “bee-glue,” is a natural resinous substance produced by honeybees from plant exudates, beeswax, and bee secretions in order to defend the hives. It has numerous phenolic compounds with more than 250 identified chemical compounds in its composition, which are also known to significantly vary according to the plant sources and season. Moreover, it has a long history in the traditional and scientific medicine as having antibacterial, anticancer, anti-inflammatory, anti-infective, and wound healing effects since 300 BC. In addition to its nutritional and health-promoting effects, it has been reported to improve the postharvest storability of fresh fruits, vegetables, and processed food products. Herein, the biochemical composition and the efficacy of propolis in maintaining the postharvest storability of fresh food products were discussed to provide comprehensive guide to farmers and food processing and storage sectors and to scientists. This review paper also highlights the important points to which special attention should be given in further studies in order to be able to use propolis to develop biopreservatives industrially and for quality preservation during storage.


Sign in / Sign up

Export Citation Format

Share Document