Selective separation of low-molecule-weight substances from hydrothermally oxidized cyanobacterial slurry to improve cultivation of Scenedesmus obliquus

2022 ◽  
Vol 157 ◽  
pp. 106346
Author(s):  
Ruochen Wang ◽  
Wei Zhu ◽  
Bin Wang ◽  
Siyuan Hu ◽  
Ganyu Feng ◽  
...  
2009 ◽  
Vol 33 (4) ◽  
pp. 696-701
Author(s):  
Jian-Min MA ◽  
Lin-Lin CAI ◽  
Ling-Wei HU ◽  
Tong-Xia JIN ◽  
Xiao-Yu LI ◽  
...  

1997 ◽  
Vol 35 (11-12) ◽  
pp. 107-112 ◽  
Author(s):  
A. M. Shaban ◽  
G. E. El-Taweel ◽  
G. H. Ali

In the present study, the effect of UV radiation on the inactivation of a range of microorganisms was studied. Each organism was seeded into sterile tap water and exposed to UV in batch experiments with changing turbidities. In addition, the effect of UV on microbial communities in river Nile water was examined. It was found that 1min contact time (0.5L/min flow rate) was effective against vegetative cells levels almost reaching zero (except with Staphylococcus aureus). On the other hand, spore-forming bacteria, Candida albicans and coliphage were more resistant to UV. This contact time caused coenobia cells in single form with Scenedesmus obliquus while for Microcystis aeruginosa colonies broke into smaller groups. Exposure of Nile water microbial communities to UV showed that yeasts and Aeromonas survived better than the other organisms while in the phytoplankton partial fragmentation occurred in some algal groups. The protective effect of turbidity differed between organisms, with increased contact time under conditions of stable turbidity having no effect on the organisms. At 20 NTU the UV radiation had no effect on the morphological characters of algal cells. In reactivation experiments, it is clear that photoreactivation, and not dark repair, takes place with bacterial cells. Only coliphage had no photoreactivation and dark repair responses although with coliphage and host, both reactivation processes worked well. Moreover, the irradiated algae regained their normal shape after 3 days in suitable media and enough light.


2020 ◽  
Vol 44 (1) ◽  
Author(s):  
Sayeda M. Abdo ◽  
Guzine I. El Diwani ◽  
Kamel M. El-Khatib ◽  
Sanaa A. Abo El-Enin ◽  
Mohammed I. El-Galad ◽  
...  

Abstract Background Microalgae cells can be identified as a potential source for new and renewable energy. The economic investigation for biodiesel and bio-active compound production from the microalgae community (Bloom), which are collected from the high rate algal pond (HRAP) constructed to treat municipal wastewater at Zenin wastewater treatment plant, Giza, was the main target of study. Results The microscopical examination showed that Scenedesmus obliquus is the dominant species. The total carotenoids were extracted using jojoba oil and determined by high-performance liquid chromatography (HPLC) to reach 81.44 μg/g. The biodiesel production through acid transesterification reaction recorded 70.6% of fatty acid methyl ester content with high cetane number (44) and low acid value. Such results prove that the obtained biodiesel has better ignition quality. The total phenolic and flavonoid compounds have been derived from the remaining biomass to give 5.36 ± 0.03 and 1.50 ± 0.19 mg/g respectively. Finally, total proteins and carbohydrates content in algal cells were recorded 54.3 and 1.5 mg/g successively Conclusion The preliminary economic evaluation showed that the production of biodiesel and carotenoids from the microalgae growing in municipal wastewater can be considered, as a techno-economic feasible process.


2019 ◽  
Vol 55 (7) ◽  
pp. 1364-1379 ◽  
Author(s):  
Rajmund S. Dybczyński ◽  
Marta Pyszynska ◽  
Krzysztof Kulisa ◽  
Anna Bojanowska-Czajka

Sign in / Sign up

Export Citation Format

Share Document