Sinomenine hydrochloride attenuates the proliferation, migration, invasiveness, angiogenesis and epithelial-mesenchymal transition of clear-cell renal cell carcinoma cells via targeting Smad in vitro

2017 ◽  
Vol 96 ◽  
pp. 1036-1044 ◽  
Author(s):  
Bin Zhao ◽  
Lei Liu ◽  
Jun Mao ◽  
Kun Liu ◽  
Weiwang Fan ◽  
...  
2021 ◽  
Author(s):  
Zhuonan Liu ◽  
Tianshui Sun ◽  
Chiyuan Piao ◽  
Zhe Zhang ◽  
Chuize Kong

Abstract Background: Clear cell renal cell carcinoma (ccRCC) is the most common and aggressive type of renal malignancy. Methyltransferase like 13 (METTL13) functions as an oncogene in most of human cancers, but its function and mechanism in ccRCC remain unreported. Methods: qRT-PCR, western blot and immunohistochemistry were used to detect METTL13’s expressions in tissues. The effects of METTL13 on ccRCC cells’ growth and metastasis were determined by both functional experiments and animal experiments. Weighted gene co-expression network analysis (WGCNA) was performed to annotate METTL13’s functions and co-immunoprecipitation (co-IP) was used to determine the interaction between two proteins. Results: METTL13 was lowly expressed in ccRCC tissues compared to normal kidney tissues and its low expression predicted poor prognosis for ccRCC patients. In vitro study indicated METTL13’s inhibition on ccRCC cells’ proliferation, viability, migratory ability and invasiveness as well as epithelial-mesenchymal transition (EMT). Bioinformatic analyses showed various biological functions and pathways METTL13 was involved in. In ccRCC cells, we observed that METTL13 could negatively regulate PI3K/AKT/mTOR/HIF-1α pathway and that it combined to c-Myc and inhibited c-Myc expression. In vivo experiment confirmed that METTL13 inhibited ccRCC cell growth and metastasis. Conclusions: In general, our finding suggests that associated with favorable prognosis of ccRCC patients, METTL13 can inhibit growth and metastasis of ccRCC cells with multiple potential molecular mechanisms. Therefore, it’s likely for METTL13 to serve as a new diagnostic and therapeutic target for ccRCC in the future.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Zhuonan Liu ◽  
Tianshui Sun ◽  
Chiyuan Piao ◽  
Zhe Zhang ◽  
Chuize Kong

Abstract Background Clear cell renal cell carcinoma (ccRCC) is the most common and aggressive type of renal malignancy. Methyltransferase like 13 (METTL13) functions as an oncogene in most of human cancers, but its function and mechanism in ccRCC remains unreported. Methods qRT-PCR, western blotting and immunohistochemistry were used to detect METTL13’s expression in tissues. The effects of METTL13 on ccRCC cells’ growth and metastasis were determined by both functional experiments and animal experiments. Weighted gene co-expression network analysis (WGCNA) was performed to annotate METTL13’s functions and co-immunoprecipitation (co-IP) was used to determine the interaction between METTL13 and c-Myc. Results METTL13 was underexpressed in ccRCC tissues compared to normal kidney tissues and its low expression predicted poor prognosis for ccRCC patients. The in vitro studies showed that knockdown and overexpression of METTL13 respectively led to increase and decrease in ccRCC cells’ proliferation, viability, migratory ability and invasiveness as well as epithelial-mesenchymal transition (EMT). The in vivo experiment demonstrated the inhibitory effect that METTL13 had on ccRCC cells’ growth and metastasis. Bioinformatic analyses showed various biological functions and pathways METTL13 was involved in. In ccRCC cells, we observed that METTL13 could negatively regulate PI3K/AKT/mTOR/HIF-1α pathway and that it combined to c-Myc and inhibited c-Myc protein expression. Conclusions In general, our finding suggests that high expression of METTL13 is associated with favorable prognosis of ccRCC patients. Meanwhile, METTL13 can inhibit growth and metastasis of ccRCC cells with participation in multiple potential molecular mechanisms. Therefore, we suggest METTL13 can be a new diagnostic and therapeutic target for ccRCC in the future.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Lu Wang ◽  
Guang Yang ◽  
Danfeng Zhao ◽  
Jiaqi Wang ◽  
Yang Bai ◽  
...  

Abstract Background Clear cell renal cell carcinoma (CCRCC) is characterized by a highly metastatic potential. The stromal communication between stem cells and cancer cells critically influences metastatic dissemination of cancer cells. Methods The effect of exosomes isolated from cancer stem cells (CSCs) of CCRCC patients on the progress of epithelial-mesenchymal transition (EMT) and lung metastasis of CCRCC cells were examined. Results CSCs exosomes promoted proliferation of CCRCC cells and accelerated the progress of EMT. Bioactive miR-19b-3p transmitted to cancer cells by CSC exosomes induced EMT via repressing the expression of PTEN. CSCs exosomes derived from CCRCC patients with lung metastasis produced the strongest promoting effect on EMT. Notably, CD103+ CSC exosomes were enriched in tumor cells and in lung as well, highlighting the organotropism conferred by CD103. In addition, CD103+ exosomes were increased in blood samples from CCRCC patients with lung metastasis. Conclusions CSC exosomes transported miR-19b-3p into CCRCC cells and initiated EMT promoting metastasis. CD103+ acted to guide CSC exosomes to target cancer cells and organs, conferring the higher metastatic capacity of CCRCC to lungs, suggesting CD103+ exosomes as a potential metastatic diagnostic biomarker. Graphical abstract ᅟ


2021 ◽  
Vol 12 (3) ◽  
Author(s):  
Bin Zhao ◽  
Lei Liu ◽  
Jun Mao ◽  
Zhiwei Zhang ◽  
Qifei Wang ◽  
...  

A Correction to this paper has been published: https://doi.org/10.1038/s41419-021-03387-3


BMC Cancer ◽  
2017 ◽  
Vol 17 (1) ◽  
Author(s):  
Jie Zhu ◽  
Liang Cui ◽  
Axiang Xu ◽  
Xiaotao Yin ◽  
Fanglong Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document