Oxidized low density lipoprotein induces endothelial-to-mesenchymal transition by stabilizing Snail in human aortic endothelial cells

2018 ◽  
Vol 106 ◽  
pp. 1720-1726 ◽  
Author(s):  
Qiang Su ◽  
Yuhan Sun ◽  
Ziliang Ye ◽  
Huafeng Yang ◽  
Lang Li
2020 ◽  
Vol 11 (2) ◽  
pp. 1881-1890 ◽  
Author(s):  
Yue-Hua Jiang ◽  
Xiao Li ◽  
Weipin Niu ◽  
DongLi Wang ◽  
Bo Wu ◽  
...  

β-sitosterol is shown to demonstrate endothelial protective effects, which inhibited apoptosis, increased cell migration, and improved mitochondrial function of human aortic endothelial cells.


Rheumatology ◽  
2020 ◽  
Author(s):  
Ricardo Rodríguez-Calvo ◽  
Montse Guardiola ◽  
Iris Oliva ◽  
Hugo Arrando ◽  
Idoia Arranz ◽  
...  

Abstract Objectives SLE patients have an enhanced risk of atherosclerosis and cardiovascular disease. However, the increased prevalence of cardiovascular disease is not fully explained by traditional Framingham cardiovascular risk factors. Specific features of low-density lipoprotein (LDL) particles, other than plasma concentration, may induce accelerated atherosclerosis at early stages in these patients. Thus, we aimed to explore the impact of LDL from both active and inactive SLE patients on human aortic endothelial cells. Methods Human aortic endothelial cells were stimulated with the same concentration of LDL particles isolated from pooled serum that was collected from 13 SLE patients during both active and inactive states. Gene expression and cell migration assays were performed. Results Circulating LDL particles obtained from healthy volunteers and SLE patients in both remission and flare states were comparable in terms of number, cholesterol and triglyceride content, and net electric charge. Stimulation of cells with LDL from active SLE patients induced the expression of vascular cell adhesion molecule 1 (∼2.0-fold, P < 0.05), monocyte chemoattractant protein 1 (∼2.0-fold, P < 0.05) and matrix metallopeptidase 2 (∼1.6-fold, P < 0.01) compared with cells stimulated with LDL from inactive SLE patients. Additionally, LDL extracted from active patients increased cell migration in a wound-healing assay (1.4-fold, P < 0.05). Conclusion Our data show that, at the same LDL concentration, LDL from active SLE patients had increased proatherogenic effects on endothelial cells compared with LDL from the same patients when in an inactive or remission state.


2009 ◽  
Vol 296 (6) ◽  
pp. C1329-C1337 ◽  
Author(s):  
Mark D. Mattaliano ◽  
Christine Huard ◽  
Wei Cao ◽  
Andrew A. Hill ◽  
Wenyan Zhong ◽  
...  

Oxidized low-density lipoprotein (OxLDL) has been implicated as a proatherogenic factor with a pathological role in the induction of endothelial dysfunction. Endothelial cells bind and uptake OxLDL primarily through the scavenger receptor lectin-like oxidized-low-density lipoprotein receptor-1 (LOX-1), which is believed to mediate critical effects of OxLDL in endothelial cells. To examine the biological events following LOX-1 activation by OxLDL, we used cDNA microarray analysis to globally analyze gene expression changes induced by OxLDL treatment of human aortic endothelial cell line (HAECT) cells overexpressing LOX-1. Consistent with reported functions of OxLDL, in control HAECT cells, OxLDL elicited gene changes in the oxidative stress pathway and other signaling pathways related to OxLDL. With OxLDL treatment, LOX-1-dependent gene expression changes associated with inflammation, cell adhesion, and signal transduction were observed. The transcripts of a number of cytokines and chemokines were induced, which included interleukin-8, CXCL2, CXCL3, and colony-stimulating factor-3. The secretion of these cytokines was confirmed by enzyme-linked immunosorbent assay analysis. In addition, our data revealed a novel link between LOX-1 and a number of genes, including Delta/notch-like epidermal growth factor repeat containing, stanniocalcin-1, cAMP response element modulator, and dual specificity phosphatase 1. Promoter analysis on the genes that changed as a result of LOX-1 activation by OxLDL allowed us to identify early growth response 1 and cAMP response element-binding protein as potential novel transcription factors that function downstream of LOX-1. Our study has enabled us to elucidate the gene expression changes following OxLDL activation of LOX-1 in endothelial cells and discover novel downstream targets for LOX-1.


Sign in / Sign up

Export Citation Format

Share Document