Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids

2008 ◽  
Vol 99 (6) ◽  
pp. 1716-1721 ◽  
Author(s):  
Hanny Johanes Berchmans ◽  
Shizuko Hirata
2013 ◽  
Vol 3 (4) ◽  
pp. 361-369 ◽  
Author(s):  
Purabi Mazumdar ◽  
Swaroopa Rani Dasari ◽  
Venu Babu Borugadda ◽  
Garima Srivasatava ◽  
L. Sahoo ◽  
...  

Fuel ◽  
2006 ◽  
Vol 85 (17-18) ◽  
pp. 2671-2675 ◽  
Author(s):  
V VELJKOVIC ◽  
S LAKICEVIC ◽  
O STAMENKOVIC ◽  
Z TODOROVIC ◽  
M LAZIC

Author(s):  
Eman H. Ahmed ◽  
Azhari H. Nour ◽  
Omer A. Omer Ishag ◽  
Abdurahman H. Nour

The need of energy never comes to an end so; the challenge is to procure power source sufficient to offer for our energy needs. Besides, this energy source must be dependable, renewable, recurring and non-contributing to climate change. Aims: This study was aimed to produce biodiesel from Roselle seed oil and to investigate its quality.  Methodology: The Roselle seeds were clean from dirt, milled to proper size and the oil was extracted using soxhlet with n-hexane as solvent. The extracted oil was subjected to physiochemical analysis tests and then transesterified using methanol and potassium hydroxide as catalyst; with ratio of oil to alcohol 1:8 at 65°C. The quality of produced biodiesel was investigated and compared to international standards. The fatty acid composition of the produced biodiesel was determined by GC-MS. Results: Based on the experimental results, the yellow with characteristic odor oil was obtained from the seeds had the following physicochemical properties: yield, 12.65%; refractive index (25°C), 1.467 m ; free fatty acids, 5.5%; saponification value, 252 mg KOH/g of oil; density, 0.915 g/mL and ester value, 241 mgKOH/g. Also the biodiesel yield achieved was 96%, with density, 0.80 g/mL; API, 44.63; Kinematics viscosity @ 40˚C, 0.742; Pour point, < -51˚C; and Micro Carbon Residual (MCR), 0.65%; which conformed to the range of ASTM D6751 and EN 14214 standard specifications. However, the GC-MS analysis result revealed that the biodiesel produced was methyl ester and free other undesired products such as linoleic acid (33%), elaidic acid (29%) and palmitic acid (17%) and other biomolecules. Conclusion: Based on the obtained results, Roselle seed oil had potential for biodiesel production due to its high contains of free fatty acids. Therefore, in the future, more investigations in alcohol: oil ratio and the concentration of catalyst may be warranted to increase the yield much more.


2011 ◽  
Vol 60 (6) ◽  
pp. 301-311 ◽  
Author(s):  
I. Ovando-Medina ◽  
FJ. Espinosa-García ◽  
J. Núñez-Farfán ◽  
M. Salvador-Figueroa

Sign in / Sign up

Export Citation Format

Share Document