Acid-catalyzed esterification of Zanthoxylum bungeanum seed oil with high free fatty acids for biodiesel production

2008 ◽  
Vol 99 (18) ◽  
pp. 8995-8998 ◽  
Author(s):  
Junhua Zhang ◽  
Lifeng Jiang
Fuel ◽  
2012 ◽  
Vol 98 ◽  
pp. 1-4 ◽  
Author(s):  
K.V. Thiruvengadaravi ◽  
J. Nandagopal ◽  
P. Baskaralingam ◽  
V. Sathya Selva Bala ◽  
S. Sivanesan

Fuel ◽  
2006 ◽  
Vol 85 (17-18) ◽  
pp. 2671-2675 ◽  
Author(s):  
V VELJKOVIC ◽  
S LAKICEVIC ◽  
O STAMENKOVIC ◽  
Z TODOROVIC ◽  
M LAZIC

Author(s):  
Eman H. Ahmed ◽  
Azhari H. Nour ◽  
Omer A. Omer Ishag ◽  
Abdurahman H. Nour

The need of energy never comes to an end so; the challenge is to procure power source sufficient to offer for our energy needs. Besides, this energy source must be dependable, renewable, recurring and non-contributing to climate change. Aims: This study was aimed to produce biodiesel from Roselle seed oil and to investigate its quality.  Methodology: The Roselle seeds were clean from dirt, milled to proper size and the oil was extracted using soxhlet with n-hexane as solvent. The extracted oil was subjected to physiochemical analysis tests and then transesterified using methanol and potassium hydroxide as catalyst; with ratio of oil to alcohol 1:8 at 65°C. The quality of produced biodiesel was investigated and compared to international standards. The fatty acid composition of the produced biodiesel was determined by GC-MS. Results: Based on the experimental results, the yellow with characteristic odor oil was obtained from the seeds had the following physicochemical properties: yield, 12.65%; refractive index (25°C), 1.467 m ; free fatty acids, 5.5%; saponification value, 252 mg KOH/g of oil; density, 0.915 g/mL and ester value, 241 mgKOH/g. Also the biodiesel yield achieved was 96%, with density, 0.80 g/mL; API, 44.63; Kinematics viscosity @ 40˚C, 0.742; Pour point, < -51˚C; and Micro Carbon Residual (MCR), 0.65%; which conformed to the range of ASTM D6751 and EN 14214 standard specifications. However, the GC-MS analysis result revealed that the biodiesel produced was methyl ester and free other undesired products such as linoleic acid (33%), elaidic acid (29%) and palmitic acid (17%) and other biomolecules. Conclusion: Based on the obtained results, Roselle seed oil had potential for biodiesel production due to its high contains of free fatty acids. Therefore, in the future, more investigations in alcohol: oil ratio and the concentration of catalyst may be warranted to increase the yield much more.


2012 ◽  
Vol 512-515 ◽  
pp. 1615-1618
Author(s):  
Jian Zhang ◽  
Xuan Jun Wang

Effects of mole rate of methanol/oil, reaction time and technology on the free fatty acid ( FFA) level decrease of Zanthoxylum bungeanum seed oil with sulfuric acid as catalyst was investigated. Results show that, the acid level decreases with the mole rate of methanol/oil increases when the sulfuric acid is 2% based on the weight of Zanthoxylum bungeanum seed oil and reacting at 60°C for 2h. When the mole rate is 20~35∶1, the final acid value is less than 2mgKOH/g which meets the requirement for biodiesel production. When the mole rate is 25∶1, with sulfuric acid dosage 2% and reacting at 60°C, the acid value decreases fast at the beginning of the acid esterification. The acid value of ZSO was reduced to 1.56 mg KOH/g from 78.91 mg KOH/g by only one-step acid-catalyzed esterification with methanol-to-oil molar ratio 30:1, H2SO4 2%, temperature 60°C and reaction time 60 min, which was selected as optimum for the acid-catalyzed esterification.


AIChE Journal ◽  
2007 ◽  
Vol 54 (1) ◽  
pp. 327-336 ◽  
Author(s):  
Chia-Hung Su ◽  
Chun-Chong Fu ◽  
James Gomes ◽  
I-Ming Chu ◽  
Wen-Teng Wu

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2562 ◽  
Author(s):  
Chia-Hung Su ◽  
Hoang Nguyen ◽  
Uyen Pham ◽  
My Nguyen ◽  
Horng-Yi Juan

This study investigated the optimal reaction conditions for biodiesel production from soursop (Annona muricata) seeds. A high oil yield of 29.6% (w/w) could be obtained from soursop seeds. Oil extracted from soursop seeds was then converted into biodiesel through two-step transesterification process. A highest biodiesel yield of 97.02% was achieved under optimal acid-catalyzed esterification conditions (temperature: 65 °C, 1% H2SO4, reaction time: 90 min, and a methanol:oil molar ratio: 10:1) and optimal alkali-catalyzed transesterification conditions (temperature: 65 °C, reaction time: 30 min, 0.6% NaOH, and a methanol:oil molar ratio: 8:1). The properties of soursop biodiesel were determined and most were found to meet the European standard EN 14214 and American Society for Testing and Materials standard D6751. This study suggests that soursop seed oil is a promising biodiesel feedstock and that soursop biodiesel is a viable alternative to petrodiesel.


2012 ◽  
Vol 37 ◽  
pp. 335-341 ◽  
Author(s):  
V. Sathya Selva Bala ◽  
K.V. Thiruvengadaravi ◽  
P. Senthil Kumar ◽  
M.P. Premkumar ◽  
Vaidyanathan Vinoth kumar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document