Induction of laccase activity in the white rot fungus Pleurotus ostreatus using water polluted with wheat straw extracts

2013 ◽  
Vol 133 ◽  
pp. 142-149 ◽  
Author(s):  
Alejandra Parenti ◽  
Elaia Muguerza ◽  
Amaia Redin Iroz ◽  
Alejandra Omarini ◽  
Enma Conde ◽  
...  
1998 ◽  
Vol 44 (7) ◽  
pp. 676-680 ◽  
Author(s):  
Orly Ardon ◽  
Zohar Kerem ◽  
Yitzhak Hadar

The white rot fungus Pleurotus ostreatus was grown in a chemically defined solid state fermentation system amended with cotton stalk extract (CSE).Treated cultures exhibited increased laccase activity as well as enhanced lignin mineralization. Mineralization of [14C]lignin initialized 4 days earlier in CSE-supplemented cultures than in control cultures. Total mineralization in the first 16 days was 15% in the CSE-treated cultures, compared with only 7% in the controls. Cotton stalk extract also contained compounds that serve as substrates for laccase purified from P. ostreatus as shown by oxygen consumption, as well as changes in the UV–visible spectrum.Key words: cotton, Pleurotusostreatus, white rot, laccase, lignin biodegradation.


2013 ◽  
Vol 726-731 ◽  
pp. 2274-2279
Author(s):  
Da Jun Ren ◽  
Xin Bao ◽  
Li Hua Liu ◽  
Qin Xu ◽  
Shu Qin Zhang ◽  
...  

NH4+-N was choiced as an influence factor for analysis the effect on the laccase activity from the white rot fungus Pleurotus ostreatus and indole degradation. The experiments were performed with different NH4+-N concentration, with a focus on the indole degradation by laccase in the presence of 2,2-Azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) or not. Results showed that NH4+-N had a positive effect on laccase activity and also enhanced the degradation of indole. Meanwhile, NH4+-N was oxidized to NO2-.


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 468
Author(s):  
Anna Pawlik ◽  
Beata Ciołek ◽  
Justyna Sulej ◽  
Andrzej Mazur ◽  
Przemysław Grela ◽  
...  

A white rot fungus Cerrena unicolor has been identified as an important source of laccase, unfortunately regulation of this enzyme genes expression is poorly understood. Using 1D and 2D PAGE and LC-MS/MS, laccase isoenzymes were investigated in the liquid filtrate of C. unicolor culture. The level of expression of laccase genes was measured using qPCR. The elevated concentrations of copper and manganese in the medium caused greatest change in genes expression and three laccase transcripts were significantly affected after culture temperature was decreased from 28 to 4 °C or increased to 40 °C. The small differences in the PAGE band intensities of individual laccase proteins were also observed, indicating that given compound affect particular laccase’s transcript. Analyses of laccase-specific activity, at all tested conditions, showed the increased activities as compared to the control, suggesting that enzyme is regulated at the post-translational stage. We observed that the aspartic protease purified from C. unicolor, significantly stimulate laccase activity. Moreover, electrochemical analysis of protease-treated laccase sample had 5 times higher redox peaks. The obtained results indicate that laccases released by C. unicolor are regulated at transcriptional, translational, and at the post-translational steps of gene expression helping fungus adapt to the environmental changes.


Bioethanol ◽  
2016 ◽  
Vol 2 (1) ◽  
Author(s):  
María García-Torreiro ◽  
Miguel Álvarez Pallín ◽  
María López-Abelairas ◽  
Thelmo A. Lu-Chau ◽  
Juan M. Lema

AbstractBioconversion of lignocellulosic materials into ethanol requires an intermediate pretreatment step for conditioning biomass. Sugar yields from wheat straw were previously improved by the addition of a mild alkali pretreatment step before bioconversion by the white-rot fungus Irpex lacteus. In this work, an alternative alkaline treatment, which significantly reduces water consumption, was implemented and optimized. Sugar recovery increased 117% with respect to the previously developed alkaline wash process at optimal process conditions (30°C, 30 minutes and 35.7% (w/w) of NaOH). In order to further reduce operational costs, a system for alkali recycling was implemented. This resulted in the treatment of 150% more wheat straw using the same amount of NaOH. Finally, enzymatic hydrolysis was optimized and resulted in a reduction of enzyme dose of 33%.


2004 ◽  
Vol 39 (11) ◽  
pp. 1561-1566 ◽  
Author(s):  
Cai Qinnghe ◽  
Yue Xiaoyu ◽  
Niu Tiangui ◽  
Ji Cheng ◽  
Ma Qiugang

Author(s):  
Johann Hess ◽  
Christian Leitner ◽  
Christiane Galhaup ◽  
Klaus D. Kulbe ◽  
Barbara Hinterstoisser ◽  
...  

BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 3797-3807
Author(s):  
Magdah Ganash ◽  
Tarek M. Abdel Ghany ◽  
Mohamed A. Al Abboud ◽  
Mohamed M. Alawlaqi ◽  
Husam Qanash ◽  
...  

Lignocellulolytic white-rot fungi allow the bioconversion of agricultural wastes into value-added products that are used in a myriad of applications. The aim of this work was to use corn residues (Zea mays L.) to produce valuable products under solid-state fermentation (SSF) with Pleurotus ostreatus. White-rot fungus P. ostreatus was isolated from maize silage (MS) and thereafter it was inoculated on MS as substrate and compared with maize stover (MSt) and maize cobs (MC) to determine the best lignocellulosic substrate for the production of lignocellulolytic enzymes and extracellular protein. The MS gave the highest productivity of CMCase (368.2 U/mL), FPase (170.5 U/mL), laccase (11.4 U/mL), and MnPase (6.6 U/mL). This is compared to productivity on MSt of 222 U/mL, 50.2 U/mL, 4.55 U/mL, and 2.57 U/mL, respectively; and productivity on MC at the same incubation period as 150.5 U/mL, 48.2 U/mL, 3.58 U/mL, and 2.5 U/mL, respectively. The levels of enzyme production declined with increasing incubation period after 15 and 20 days using MS and MC, respectively, as substrates. Maximum liberated extracellular protein content (754 to 878 µg/mL) was recorded using MS, while a low amount (343 to 408 µg/mL) was liberated with using MSt and MC.


2019 ◽  
Vol 250 ◽  
pp. 546-553 ◽  
Author(s):  
Benny Chefetz ◽  
Rotem Marom ◽  
Orit Salton ◽  
Mariana Oliferovsky ◽  
Vered Mordehay ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document