Enhanced Formation of Extracellular Laccase Activity by the White-Rot Fungus Trametes multicolor

Author(s):  
Johann Hess ◽  
Christian Leitner ◽  
Christiane Galhaup ◽  
Klaus D. Kulbe ◽  
Barbara Hinterstoisser ◽  
...  
2002 ◽  
Vol 98-100 (1-9) ◽  
pp. 229-242 ◽  
Author(s):  
Johann Hess ◽  
Christian Leitner ◽  
Christiane Galhaup ◽  
Klaus D. Kulbe ◽  
Barbara Hinterstoisser ◽  
...  

Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 468
Author(s):  
Anna Pawlik ◽  
Beata Ciołek ◽  
Justyna Sulej ◽  
Andrzej Mazur ◽  
Przemysław Grela ◽  
...  

A white rot fungus Cerrena unicolor has been identified as an important source of laccase, unfortunately regulation of this enzyme genes expression is poorly understood. Using 1D and 2D PAGE and LC-MS/MS, laccase isoenzymes were investigated in the liquid filtrate of C. unicolor culture. The level of expression of laccase genes was measured using qPCR. The elevated concentrations of copper and manganese in the medium caused greatest change in genes expression and three laccase transcripts were significantly affected after culture temperature was decreased from 28 to 4 °C or increased to 40 °C. The small differences in the PAGE band intensities of individual laccase proteins were also observed, indicating that given compound affect particular laccase’s transcript. Analyses of laccase-specific activity, at all tested conditions, showed the increased activities as compared to the control, suggesting that enzyme is regulated at the post-translational stage. We observed that the aspartic protease purified from C. unicolor, significantly stimulate laccase activity. Moreover, electrochemical analysis of protease-treated laccase sample had 5 times higher redox peaks. The obtained results indicate that laccases released by C. unicolor are regulated at transcriptional, translational, and at the post-translational steps of gene expression helping fungus adapt to the environmental changes.


1998 ◽  
Vol 44 (7) ◽  
pp. 676-680 ◽  
Author(s):  
Orly Ardon ◽  
Zohar Kerem ◽  
Yitzhak Hadar

The white rot fungus Pleurotus ostreatus was grown in a chemically defined solid state fermentation system amended with cotton stalk extract (CSE).Treated cultures exhibited increased laccase activity as well as enhanced lignin mineralization. Mineralization of [14C]lignin initialized 4 days earlier in CSE-supplemented cultures than in control cultures. Total mineralization in the first 16 days was 15% in the CSE-treated cultures, compared with only 7% in the controls. Cotton stalk extract also contained compounds that serve as substrates for laccase purified from P. ostreatus as shown by oxygen consumption, as well as changes in the UV–visible spectrum.Key words: cotton, Pleurotusostreatus, white rot, laccase, lignin biodegradation.


2013 ◽  
Vol 133 ◽  
pp. 142-149 ◽  
Author(s):  
Alejandra Parenti ◽  
Elaia Muguerza ◽  
Amaia Redin Iroz ◽  
Alejandra Omarini ◽  
Enma Conde ◽  
...  

2021 ◽  
Author(s):  
Mingwen Zhao ◽  
Jing Zhu ◽  
Shuqi Song ◽  
Lindan Lian ◽  
Liang Shi ◽  
...  

Abstract Ganoderma lucidum is a representative white-rot fungus that has great potential to degrade lignocellulose biomass. Laccase is recognized as a class of the most important lignin-degrading enzymes in G. lucidum. However, the comprehensive regulatory mechanisms of laccase are still lacking. Based on the genome sequence of G. lucidum, 15 laccase genes were identified and their encoding proteins were analyzed in this study. All of the laccase proteins are predicted to be multicopper oxidases with conserved copper-binding domains. Most laccase proteins were secreted enzymes in addition to Lac14 in which the signal peptide could not be predicted. The activity of all laccases showed the highest level at pH 3.0 or pH 7.0, with total laccase activity of approximately 200 U/mg protein. Silencing PacC resulted in a 5.2 fold increase in laccase activity compared with WT. Five laccase genes (lac1, lac6, lac9, lac10 and lac14) showed an increased transcription levels (approximately 1.5-5.6 fold) in the PacC-silenced strains versus that in WT, while other laccase genes were downregulated or unchanged. The extracellular pH value was about 3.1, which was more acidic in the PacC-silenced strains than in the WT (pH 3.5). Moreover, maintaining the fermentation pH resulted in a downregulation of laccase activity which is induced by silencing PacC Our findings indicate that in addition to its function in acidification of environmental pH, PacC plays an important role in regulating laccase activity in fungi.


2002 ◽  
Vol 98-100 (1-9) ◽  
pp. 497-508 ◽  
Author(s):  
Christian Leitner ◽  
Johann Hess ◽  
Christiane Galhaup ◽  
Roland Ludwig ◽  
Bernd Nidetzky ◽  
...  

Microbiology ◽  
1995 ◽  
Vol 141 (2) ◽  
pp. 393-398 ◽  
Author(s):  
H.-D. Youn ◽  
K.-J. Kim ◽  
J.-S. Maeng ◽  
Y.-H. Han ◽  
I.-B. Jeong ◽  
...  

2013 ◽  
Vol 726-731 ◽  
pp. 2274-2279
Author(s):  
Da Jun Ren ◽  
Xin Bao ◽  
Li Hua Liu ◽  
Qin Xu ◽  
Shu Qin Zhang ◽  
...  

NH4+-N was choiced as an influence factor for analysis the effect on the laccase activity from the white rot fungus Pleurotus ostreatus and indole degradation. The experiments were performed with different NH4+-N concentration, with a focus on the indole degradation by laccase in the presence of 2,2-Azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) or not. Results showed that NH4+-N had a positive effect on laccase activity and also enhanced the degradation of indole. Meanwhile, NH4+-N was oxidized to NO2-.


Sign in / Sign up

Export Citation Format

Share Document