Pilot scale anaerobic co-digestion of municipal wastewater sludge with biodiesel waste glycerin

2013 ◽  
Vol 133 ◽  
pp. 206-212 ◽  
Author(s):  
Vahid Razaviarani ◽  
Ian D. Buchanan ◽  
Shahid Malik ◽  
Hassan Katalambula
2013 ◽  
Vol 123 ◽  
pp. 26-33 ◽  
Author(s):  
Vahid Razaviarani ◽  
Ian D. Buchanan ◽  
Shahid Malik ◽  
Hassan Katalambula

1996 ◽  
Vol 34 (3-4) ◽  
pp. 533-540 ◽  
Author(s):  
A. Koenig ◽  
J. N. Kay ◽  
I. M. Wan

In the context of landfilling dewatered wastewater sludge in Hong Kong, with landfills up to 140 m high, one of the most significant properties of sludge is its physical nature with regard to moisture characteristics and associated geotechnical stability. Commonly, lower limits are set on total solids content, but no geotechnical stability criteria are applied with the exception of Germany where a minimum requirement for vane shear strength is set at 25 kN/m2. The purpose of this study was to determine and evaluate dewatered wastewater sludge from three Hong Kong municipal wastewater treatment plants with regard to the following physical and geotechnical properties: (i) vane shear strength; (ii) consolidation characteristics such as compression index, compressibility factor, coefficient of consolidation and compressibility coefficient; and (iii) hydraulic characteristics such as permeability and intrinsic resistance. Although dewatered sludge exhibits quite different characteristics as compared to soils, predictive logarithmic relationships may be established between various properties which are consistent with the critical state model for soils, conventional filtration and consolidation theory. Such representation provides a valuable basis for understanding the sludge characteristics and behaviour to landfill design.


2003 ◽  
Vol 3 (4) ◽  
pp. 145-152 ◽  
Author(s):  
H. Heinonen-Tanski ◽  
P. Juntunen ◽  
R. Rajala ◽  
E. Haume ◽  
A. Niemelä

Municipal treated wastewater has been tertiary treated in a pilot-scale rapid sand filter. The filtration process was improved by using polyaluminium coagulants. The sand-filtered water was further treated with one or two UV reactors. The quality changes of wastewater were measured with transmittance, total phosphorus, soluble phosphorus, and somatic coliphages, FRNA-coliphages, FC, enterococci and fecal clostridia. Sand filtration alone without coagulants improved slightly some physico-chemical parameters and it had almost no effect on content of microorganisms. If coagulants were used, the filtration was more effective. The reductions were 88-98% for microbial groups and 80% for total phosphorus. The wastewater would meet the requirements for bathing waters (2,000 FC/100 ml, EU, 1976). UV further improved the hygiene level; this type of treated wastewater could be used for unrestricted irrigation (2.2 TC/100 ml, US.EPA 1992). The improvement was better if coagulants were used. The price for tertiary treatment (filtration + UV) would have been 0.036 Euro/m3 according to prices in 2001 in 22 Mm3/a. The investment cost needed for the filtration unit was 0.020 Euro/m3 (6%/15a). Filtration with coagulants is recommended in spite of its costs, since the low transmittance of unfiltered wastewater impairs the efficiency of the UV treatment.


Biofuels ◽  
2021 ◽  
pp. 1-6
Author(s):  
Vinod Kumar ◽  
Krishna Kumar Jaiswal ◽  
Mikhail S. Vlaskin ◽  
Manisha Nanda ◽  
M. K. Tripathi ◽  
...  

2012 ◽  
Vol 65 (3) ◽  
pp. 403-409 ◽  
Author(s):  
A. Ya. Vanyushina ◽  
Yu. A. Nikolaev ◽  
A. M. Agarev ◽  
M. V. Kevbrina ◽  
M. N. Kozlov

The process of anaerobic thermophilic digestion of municipal wastewater sludge with a recycled part of thickened digested sludge, was studied in semi-continuous laboratory digesters. This modified recycling process resulted in increased solids retention time (SRT) with the same hydraulic retention time (HRT) as compared with traditional digestion without recycling. Increased SRT without increasing of HRT resulted in the enhancement of volatile substance reduction by up to 68% in the reactor with the recycling process compared with 34% in a control conventional reactor. Biogas production was intensified from 0.3 L/g of influent volatile solids (VS) in the control reactor up to 0.35 L/g VS. In addition, the recycling process improved the dewatering properties of digested sludge.


Author(s):  
Ю.А. Егорова ◽  
В.И. Кичигин ◽  
О.И. Нестеренко ◽  
А.А. Юдин

Осадки городских очистных канализационных сооружений являются самым массовым технологическим отходом, создающим проблемы утилизации для любого города. Рассмотрены возможные методы обработки осадков сточных вод на городских очистных канализационных сооружениях городского округа Самара с целью их последующей утилизации. Обозначены причины и приведены документальные подтверждениянекорректности возложения ответственности за обращение с такими отходами только на организации водопроводно-канализационного хозяйства. Рассмотрен способ захоронения обезвоженного осадка сточных вод в обвалованном полигоне. Установлено, что обработанные на очистных сооружениях осадки относятся к V классу опасности для окружающей среды. Обработанные, стабилизированные, подсушенные, обезвреженные отходы осадков сточных вод (малоопасный осадок с песколовок при очистке хозяйственно-бытовых и смешанных сточных вод, практически не опасный осадок с песколовок при очистке хозяйственно-бытовых и смешанных сточных вод и избыточный ил биологических очистных сооружений в смеси с сырым осадком) могут быть использованы в качестве наполнителей бетонно-цементных смесей и органоминеральных удобрений или переданы для утилизации сторонним организациям. Sludge from the municipal wastewater treatment facilities is the most massive technological waste that causes trouble for any city. Possible methods of wastewater sludge treatment at the municipal wastewater treatment facilities of the Samara Urban District with the purpose of its further utilization are considered. The reasons are indicated and documentary evidence of the incorrectness of assigning the responsibility for processing such wastes only to the water and wastewater utilities is provided. The method of landfilling dewatered wastewater sludge in a ridged landfill is considered. It has been established that the sludge processed at the wastewater treatment facilities is referred to the V class of environmental hazard. Sludge subjected to the treatment, stabilization, drying and neutralization (low hazardous sludge from grit chambers for domestic and mixed wastewater treatment; almost non-hazardous sludge from grit chambers for domestic and mixed wastewater treatment and excess sludge from biological treatment facilities mixed with raw sludge) can be used as fillers for concrete-cement mixtures and organo-mineral fertilizers or transferred for disposal to outside companies.


2003 ◽  
Vol 48 (5) ◽  
pp. 257-266 ◽  
Author(s):  
K. Boonsong ◽  
S. Piyatiratitivorakul ◽  
P. Patanaponpaiboon

The study evaluated the possibility of using mangrove plantation to treat municipal wastewater. Two types of pilot scale (100 × 150 m2) free water surface constructed wetland were set up. One system was a natural Avicennia marina dominated forest system. The other system was a newly planted system in which seedlings of Rhizophora spp., A. marina, Bruguiera cylindrica and Ceriops tagal were planted in 4 strips. Municipal wastewater was retained within the systems for 7 and 3 days, respectively. The results indicated that the average removal percentage of TSS, BOD, NO3-N, NH4-N, TN, PO4-P and TP in the newly planted system were 27.6-77.1, 43.9-53.9, 37.6-47.5, 81.1-85.9, 44.8-54.4, 24.7-76.8 and 22.6-65.3, respectively. Whereas the removal percentage of those parameters in the natural forest system were 17.1-65.9, 49.5-51.1, 44.0-60.9, 51.1-83.5, 43.4-50.4, 28.7-58.9 and 28.3-48.0, respectively. Generally, the removal percentages within the newly planted system and the natural forest system were not significantly different. However, when the removal percentages were compared with detention time, TSS, PO4-P and TP percentages removed were significantly higher in the 7-day detention time treatment. Even though the removal percentages were highly varied and temporally dependent, the overall results showed that mangrove plantation could be used as constructed wetland for municipal wastewater treatment in a similar way to the natural mangrove system.


Sign in / Sign up

Export Citation Format

Share Document