Enzymatic pretreatment of Chlorella vulgaris for biogas production: Influence of urban wastewater as a sole nutrient source on macromolecular profile and biocatalyst efficiency

2016 ◽  
Vol 199 ◽  
pp. 319-325 ◽  
Author(s):  
Ahmed Mahdy ◽  
Mercedes Ballesteros ◽  
Cristina González-Fernández
2021 ◽  
Vol 124 ◽  
pp. 254-263
Author(s):  
Romina Avila ◽  
Elvira Carrero ◽  
Teresa Vicent ◽  
Paqui Blánquez

2014 ◽  
Vol 173 ◽  
pp. 59-66 ◽  
Author(s):  
Michel Schroyen ◽  
Han Vervaeren ◽  
Stijn W.H. Van Hulle ◽  
Katleen Raes

2017 ◽  
Vol 12 (2) ◽  
pp. 71-74
Author(s):  
Булат Зиганшин ◽  
Bulat Ziganshin ◽  
Ильназ Кашапов ◽  
Ilnaz Kashapov ◽  
Ильнур Гайфуллин ◽  
...  

The first scientific developments in the field of biogas technologies were made in Russia more than 70 years ago. Since the 50th years one of the main directions was the anaerobic processing of activated sludge and sediments of urban wastewater. This method attracted attention in connection with the idea of obtaining biogas mainly from the manure of farm animals. Thanks to this in the middle of 50th years a number of pilot plants for biogas production were built in Zaporozhia, Belorussian, Georgian, Moldavian branches of All-Russian Institute of Agriculture Electrification, and also in Ekaterinburg. However, the operating experience of these installations was insignificant - one - two seasons. The problem of obtaining and using biogas is given great attention abroad. In a short time, in many countries around the world a whole industry for the production of biogas has emerged. The leader in the development of biogas industry is China. Since the middle of 1970, the National Program for the production of biogas from livestock wastes has been operating in this country. Currently, there are 10 million farm bioreactors. In addition, 40 000 biogas stations, 24 000 biogas treatment plants operate in China, which provides operation of 190 power plants.


2016 ◽  
Vol 19 ◽  
pp. 184-188 ◽  
Author(s):  
Andrea Hom-Diaz ◽  
Fabiana Passos ◽  
Ivet Ferrer ◽  
Teresa Vicent ◽  
Paqui Blánquez

2014 ◽  
Vol 80 (14) ◽  
pp. 4199-4206 ◽  
Author(s):  
Camilo Muñoz ◽  
Catalina Hidalgo ◽  
Manuel Zapata ◽  
David Jeison ◽  
Carlos Riquelme ◽  
...  

ABSTRACTIn this study, we designed and evaluated a microalgal pretreatment method using cellulolytic bacteria that naturally degrades microalgae in their native habitat. Bacterial strains were isolated from each of two mollusk species in a medium containing 1% carboxymethyl cellulose agar. We selected nine bacterial strains that had endoglucanase activity: five strains fromMytilus chilensis, a Chilean mussel, and four strains fromMesodesma donacium, a clam found in the Southern Pacific. These strains were identified phylogenetically as belonging to the generaAeromonas,Pseudomonas,Chryseobacterium, andRaoultella. The cellulase-producing capacities of these strains were characterized, and the degradation of cell walls inBotryococcus brauniiandNannochloropsis gaditanawas tested with “whole-cell” cellulolytic experiments.Aeromonas bivalviumMA2,Raoultella ornithinolyticaMA5, andAeromonas salmonicidaMC25 degradedB. braunii, andR. ornithinolyticaMC3 and MA5 degradedN. gaditana. In addition,N. gaditanawas pretreated withR. ornithinolyticastrains MC3 and MA5 and was then subjected to an anaerobic digestion process, which increased the yield of methane by 140.32% and 158.68%, respectively, over that from nonpretreated microalgae. Therefore, a “whole-cell” cellulolytic pretreatment can increase the performance and efficiency of biogas production.


2020 ◽  
Vol 9 (7) ◽  
pp. e823974882
Author(s):  
Isadora Machado Marques ◽  
Natália Ribeiro Melo ◽  
Adna Caroline Vale Oliveira ◽  
Ícaro Thiago Andrade Moreira

The production of biofuels through microalgae biomass represents a new generation of raw materials from renewable sources to meet society’s clamors and growing insertion in the market of fuels from products that could grant the planet a sustainable future. The present study assesses the biomass obtained from microalgae Chlorella vulgaris when grown in urban wastewater, extracting the lipids from the biomass and performing Gas Chromatography analysis of fatty acid methyl esters (FAME) composition after submitting the lipids through the transesterification process. The microalgae cultivation was monitored through chlorophyll (a) analysis and the highest cell growth was 845.8 µg L-1 using urban wastewater as growth medium. The nutrients of interest were monitored for primary concentration of 8.06 ± 0.06 mg L-1 of ammoniacal nitrogen, 12.27 ± 0.27 mg L-1 of nitrate and 21.22 ± 0.85 mg L-1 of phosphate, reducing about 99% of ammoniacal nitrogen and nitrate, along with reducing 87% of phosphate. The lipid constitution extracted from 3.7 g of dry biomass of Chlorella vulgaris after cultivation using urban wastewater, was 7.7%. The lipids extracted from the Chlorella vulgaris biomass are suitable biodiesel production regarding the amounts of FAMEs identified, after the analysis carried out, the comparison of the results obtained with other studies and the hypotheses evaluation.


Sign in / Sign up

Export Citation Format

Share Document