enzymatic pretreatment
Recently Published Documents


TOTAL DOCUMENTS

160
(FIVE YEARS 47)

H-INDEX

30
(FIVE YEARS 5)

Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 54
Author(s):  
Jelena Vladić ◽  
Ana Rita C. Duarte ◽  
Sanja Radman ◽  
Siniša Simić ◽  
Igor Jerković

The goal of the study was to establish a procedure for improving the efficiency of supercritical carbon dioxide (scCO2) extraction of Origanum vulgare L. spp. hirtum (Greek oregano) and enhancing the quality of obtained extracts. Microwave and enzymatic pretreatments of the plant material were applied prior to the scCO2 extraction. It was determined that the microwave pretreatment with irradiation power 360 W during 2 min accelerated the extraction of lipophilic compounds and provided a twofold higher extraction yield compared to the control. Moreover, this pretreatment also led to an increase in oxygenated monoterpenes content and the most dominant component carvacrol, as well as the extracts’ antioxidant activity. The enzymatic pretreatment caused a significant increase in the extraction yield and the attainment of the extract with the most potent antioxidant properties. Coupling the pretreatments with scCO2 extraction improves the process of obtaining high value lipophilic products of oregano in terms of utilization of the plant material, acceleration of the extraction with the possibility to adjust its selectivity and quality of extracts, and enhancement of biological activity.


Author(s):  
Cristina Blanco-Llamero ◽  
Paz García-García ◽  
Francisco Javier Señoráns

Carrier-free immobilization is a key process to develop efficient biocatalysts able to catalyze the cell wall degradation in microalgae where the traditional solid supports cannot penetrate. Thus, the insolubilization of commercial Celluclast®, Alcalase®, and Viscozyme® enzymes by carrier-free immobilization and their application in microalgae pretreatment was investigated. In this study, different precipitants at different ratios (ethanol, acetone, and polyethylene glycol 4000) were tested in the first part of the method, to establish the precipitation conditions. The screening of the best precipitant is needed as it depends on the nature of the enzyme. The best results were studied in terms of immobilization yield, thermal stability, and residual activity and were analyzed using scanning electron microscopy. Moreover, a novel strategy was intended including the three enzymes (combi-CLEAs) to catalyze the enzymatic degradation of Nannochloropsis gaditana microalgal cell wall in one pot. The carrier-free immobilized derivatives were 10 times more stable compared to soluble enzymes under the same. At the best conditions showed its usefulness in the pretreatment of microalgae combined with ultrasounds, facilitating the cell disruption and lipid recovery. The results obtained suggested the powerful application of these robust biocatalysts with great catalytic properties on novel and sustainable biomass such as microalgae to achieve cost-effective and green process to extract valuable bioactive compounds.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7292
Author(s):  
Zoé P. Morreeuw ◽  
Leopoldo J. Ríos-González ◽  
Carmen Salinas-Salazar ◽  
Elda M. Melchor-Martínez ◽  
Juan A. Ascacio-Valdés ◽  
...  

Agave lechuguilla agro-waste is a promising renewable material for biorefining purposes. The procurement of added-value co-products, such as bioactive phytochemicals, is required to improve bioprocesses and promote the bio-based economy of the productive areas of Mexico. In this study, we aimed to evaluate the effect of post-harvest management and enzymatic pretreatment as the first stages of the A. lechuguilla valorization process. Four drying methods were compared, and enzymatic hydrolysis was optimized to obtain a flavonoid-enriched extract applying ultrasound-assisted extraction. In both experiments, the total phenolic (TPC) and flavonoid (TFC) contents, HPLC-UV flavonoid profiles, and radical scavenging capacity (DPPH) were considered as response variables. The results demonstrated that light exposure during the drying process particularly affected the flavonoid content, whereas oven-dehydration at 40 °C in the dark preserved the flavonoid diversity and antioxidant functionality of the extracts. Flavonoid glycoside recovery, particularly anthocyanidins, was 1.5–1.4-fold enhanced by enzymatic hydrolysis using the commercial mix Ultraflo© under optimized conditions (pH 4, 40 °C, 180 rpm, and 2.5 h) compared to the unpretreated biomass. The extraction of flavonoids from A. lechuguilla bagasse can be carried out using a scalable drying method and enzymatic pretreatment. This study confirmed the potential of this agro-waste as a source of marketable natural products.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6782
Author(s):  
Sebastian Borowski ◽  
Weronika Cieciura-Włoch

This study investigated acid splitting wastewater (ASW) and interphase (IF) from soapstock splitting, as well as matter organic non glycerol (MONG) from glycerol processing, as potential substrates for biogas production. Batch and semicontinuous thermophilic anaerobic digestion experiments were conducted, and the substrates were preliminary treated using commercial enzymes kindly delivered by Novozymes A/C. The greatest enhancement in the batch digestion efficiency was achieved when three preparations; EversaTransform, NovoShape, and Lecitase were applied in the hydrolysis stage, which resulted in the maximum methane yields of 937 NL/kg VS and 915 NL/kg VS obtained from IF and MONG, respectively. The co-digestion of 68% ASW, 16% IF, and 16% MONG (wet weight basis) performed at an organic loading rate (OLR) of 1.5 kg VS/m3/day provided an average methane yield of 515 NLCH4/kg VSadded and a volatile solid reduction of nearly 95%. A relatively high concentration of sulfates in the feed did not significantly affect the digestion performance but resulted in an increased hydrogen sulfide concentration in the biogas with the peak of 4000 ppm.


2021 ◽  
pp. 100874
Author(s):  
Seyedbehnam Hashemi ◽  
Prajin Joseph ◽  
Antoine Mialon ◽  
Størker Moe ◽  
Jacob J. Lamb ◽  
...  

Author(s):  
Shin Young Park ◽  
Seokho Lee ◽  
Wanhee Im ◽  
Hak Lae Lee ◽  
Hye Jung Youn

Sign in / Sign up

Export Citation Format

Share Document