Evaluation of hyper thermal acid hydrolysis of Kappaphycus alvarezii for enhanced bioethanol production

2016 ◽  
Vol 209 ◽  
pp. 66-72 ◽  
Author(s):  
Chae Hun Ra ◽  
Trung Hau Nguyen ◽  
Gwi-Taek Jeong ◽  
Sung-Koo Kim
2017 ◽  
Vol 39 (4) ◽  
pp. 423 ◽  
Author(s):  
George Meredite Cunha de Castro ◽  
Norma Maria Barros Benevides ◽  
Maulori Curié Cabral ◽  
Rafael De Souza Miranda ◽  
Enéas Gomes Filho ◽  
...  

 The seaweeds are bio-resource rich in sulfated and neutral polysaccharides. The tropical seaweed species used in this study (Solieria filiformis), after dried, shows 65.8% (w/w) carbohydrate, 9.6% (w/w) protein, 1.7% (w/w) lipid, 7.0% (w/w) moisture and 15.9% (w/w) ash. The dried seaweed was easily hydrolyzed under mild conditions (0.5 M sulfuric acid, 20 min.), generating fermentable monosaccharides with a maximum hydrolysis efficiency of 63.21%. Galactose and glucose present in the hydrolyzed were simultaneously fermented by Saccharomyces cerevisiae when the yeast was acclimated to galactose and cultivated in broth containing only galactose. The kinetic parameters of the fermentation of the seaweed hydrolyzed were Y(P⁄S) = 0.48 ± 0.02 g.g−1, PP = 0.27 ± 0.04 g.L−1.h−1, h = 94.1%, representing a 41% increase in bioethanol productivity. Therefore, S. filiformis was a promising renewable resource of polysaccharides easily hydrolyzed, generating a broth rich in fermentable monosaccharides for ethanol production. 


2019 ◽  
Vol 12 (2) ◽  
pp. 419-432 ◽  
Author(s):  
Fernando Roberto Paz-Cedeno ◽  
Eddyn Gabriel Solórzano-Chávez ◽  
Levi Ezequiel de Oliveira ◽  
Valéria Cress Gelli ◽  
Rubens Monti ◽  
...  

2009 ◽  
Vol 43 (2) ◽  
pp. 208-211 ◽  
Author(s):  
Marija B. Tasić ◽  
Budimir V. Konstantinović ◽  
Miodrag L. Lazić ◽  
Vlada B. Veljković

2013 ◽  
Vol 7 (3) ◽  
pp. 376-389 ◽  
Author(s):  
Can Ucuncu ◽  
Canan Tari ◽  
Hande Demir ◽  
Ali Oguz Buyukkileci ◽  
Banu Ozen

Sign in / Sign up

Export Citation Format

Share Document