scholarly journals Optimized acid hydrolysis of the polysaccharides from the seaweed Solieria filiformis (Kützing) P.W. Gabrielson for bioethanol production

2017 ◽  
Vol 39 (4) ◽  
pp. 423 ◽  
Author(s):  
George Meredite Cunha de Castro ◽  
Norma Maria Barros Benevides ◽  
Maulori Curié Cabral ◽  
Rafael De Souza Miranda ◽  
Enéas Gomes Filho ◽  
...  

 The seaweeds are bio-resource rich in sulfated and neutral polysaccharides. The tropical seaweed species used in this study (Solieria filiformis), after dried, shows 65.8% (w/w) carbohydrate, 9.6% (w/w) protein, 1.7% (w/w) lipid, 7.0% (w/w) moisture and 15.9% (w/w) ash. The dried seaweed was easily hydrolyzed under mild conditions (0.5 M sulfuric acid, 20 min.), generating fermentable monosaccharides with a maximum hydrolysis efficiency of 63.21%. Galactose and glucose present in the hydrolyzed were simultaneously fermented by Saccharomyces cerevisiae when the yeast was acclimated to galactose and cultivated in broth containing only galactose. The kinetic parameters of the fermentation of the seaweed hydrolyzed were Y(P⁄S) = 0.48 ± 0.02 g.g−1, PP = 0.27 ± 0.04 g.L−1.h−1, h = 94.1%, representing a 41% increase in bioethanol productivity. Therefore, S. filiformis was a promising renewable resource of polysaccharides easily hydrolyzed, generating a broth rich in fermentable monosaccharides for ethanol production. 

1985 ◽  
Author(s):  
John F. Harris ◽  
Andrew J. Baker ◽  
Anthony H. Conner ◽  
Thomas W. Jeffries ◽  
James L. Minor ◽  
...  

2007 ◽  
Vol 46 (7) ◽  
pp. 1938-1944 ◽  
Author(s):  
Eliana V. Canettieri ◽  
George J. M. Rocha ◽  
João A. Carvalho, ◽  
João B. A. Silva

2012 ◽  
Vol 4 (2) ◽  
pp. 021201 ◽  
Author(s):  
I. P. Hernández ◽  
José A. Pérez-Pimienta ◽  
Sarah Messina ◽  
Claudia E. Saldaña Durán

2009 ◽  
Vol 43 (2) ◽  
pp. 208-211 ◽  
Author(s):  
Marija B. Tasić ◽  
Budimir V. Konstantinović ◽  
Miodrag L. Lazić ◽  
Vlada B. Veljković

2014 ◽  
Vol 875-877 ◽  
pp. 242-245
Author(s):  
Jutarut Pornpunyapat ◽  
Wilaiwan Chotigeat ◽  
Pakamas Chetpattananondh

Bioethanol is widely used as renewable resource due to its safe to produce and environmentally friendly. However, knowledge on ethanol production from pineapple peel juice (Pattawia spp) is far from sufficient. In this work, pineapple peel juice (initial pH at 5) was fermented at various yeast contents (1, 3 and 5% by wt.) and fermentation times (3, 5 and 7 days) in order to investigate ethanol production characteristics. Yeast, Sacchromyces cerevisiae was grown on pineapple peel juice. The squeezed juice contained 11% of total sugar and 5% of reducing sugar. The results indicated that the optimum ethanol production was yeast contents of 5% by wt. and fermentation times of 5 days which gave the ethanol production of 9.08g/l. The ethanol at a higher yeast content also had a higher ethanol concentration.


2013 ◽  
Vol 7 (3) ◽  
pp. 376-389 ◽  
Author(s):  
Can Ucuncu ◽  
Canan Tari ◽  
Hande Demir ◽  
Ali Oguz Buyukkileci ◽  
Banu Ozen

2021 ◽  
Vol 14 (2) ◽  
pp. 43
Author(s):  
Putra Oktavianto ◽  
Risdiyana Setiawan ◽  
Ilhami Ariyanti ◽  
Muhammad Fadhil Jamil

BIOETHANOL PRODUCTION FROM COCONUT HUSK USING the WET GAMMA IRRADIATION METHOD. The use of coconut husk has only been used as a material for making handicrafts such as ropes, brooms, mats, and others or just burned. The combustion of coconut husk can cause air pollution. In fact, coconut husk can be used as a raw material for bioethanol production so that the beneficial value of coconut husk will also increase. One way of bioethanol production from coconut husk is by irradiating the coconut husk. The coconut husk irradiation technique to be carried out in this study is the wet irradiation technique. Wet irradiation is carried out to accelerate the process of bioethanol production because at the time of irradiation, cellulose has been hydrolyzed and glucose has been formed so that it is more efficient in time and use of the material so that the cellulose hydrolysis process is not necessary. The coconut husk samples were wet because they were mixed with 4% NaOH and were irradiated using a gamma irradiator from STTN-BATAN Yogyakarta with a dose of 30 kGy and 50 kGy and 0 kGy (or without irradiation). Then the sample is fermented with the fungus Saccharomyces Cerevisiae from tape yeast to form ethanol. Ethanol is purified and then analyzed for concentrations using pycnometric and refractometric methods. The result is that the highest ethanol content is without irradiation (0 kGy), this is due to the low dosage used. However, the main point in this wet method research is evidence of hydrolysis of cellulose by the formation of gluoxane after irradiated wet coconut husk, and with Fehling A and B analysis, brown deposits are seen proving that glucose has been formed.


Sign in / Sign up

Export Citation Format

Share Document