Ethanol production in a simultaneous saccharification and fermentation process with interconnected reactors employing hydrodynamic cavitation-pretreated sugarcane bagasse as raw material

2017 ◽  
Vol 243 ◽  
pp. 652-659 ◽  
Author(s):  
Ruly Terán Hilares ◽  
João Vitor Ienny ◽  
Paulo Franco Marcelino ◽  
Muhammad Ajaz Ahmed ◽  
Felipe A.F. Antunes ◽  
...  
2011 ◽  
Vol 343-344 ◽  
pp. 963-967 ◽  
Author(s):  
Zhang Qiang ◽  
Anne Belinda Thomsen

In order to find out appropriate process for ethanol production from corn stover, wet oxidation(195°C,15 minutes)and simultaneous saccharification and fermentation (SSF) was carried out to produce ethanol. The results showed that the cellulose recovery of 92.9% and the hemicellulose recovery of 74.6% were obtained after pretreatment. 86.5% of cellulose was remained in the solid cake . After 24h hydrolysis at 50°C using cellulase(Cellubrix L),the achieved conversion of cellulose to glucose was 64.8%. Ethanol production was evaluated from dried solid cake and the hydrolysate was employed as liquid fraction . After 142 h of SSF with substrate concentration of 8% (W/V), ethanol yield of 73.1 % of the theoretical based on glucose in the raw material was obtained by S. cerevisiae(ordinary baker’ yeast) . The corresponding ethanol concentration and volumetric productivity were 17.2g/L and 0.121g/L.h respectively. The estimated total ethanol production was 257.7 kg/ton raw material by assuming consumption of both C-6 and C-5. No obvious inhibition effect occurred during SSF. These instructions give you the basic guidelines for preparing papers for WCICA/IEEE conference proceedings.


RSC Advances ◽  
2016 ◽  
Vol 6 (94) ◽  
pp. 91409-91419 ◽  
Author(s):  
Rajendran Velmurugan ◽  
Aran Incharoensakdi

To improve the saccharification and fermentation processes, proper ultrasound was applied which resulted in the presence of cellulase complex with improved β-glucosidase ratio leading to enhanced overall ethanol yield.


2013 ◽  
Vol 724-725 ◽  
pp. 391-398
Author(s):  
Qin Zhang ◽  
Yan Bin Li ◽  
Zhan Wen Liu ◽  
Yun Feng Pu ◽  
Li Ming Xia

Steam-exploded cotton stalk was used as raw material in ethanol production through simultaneous saccharification and fermentation by Penicillium Q59 and Saccharomyces cerevisiae P1. The fermentative conditions were firstly examined by single factor experiments to determine the central point in Box-Behnken design, which was explored with expectation to get optimized fermentative conditions for enhancement of ethanol production. The results of optimized fermentative conditions were determined as follows: fermentation time was 10.5 days, bran added percent was 15%, initial pH value was 5.5. Under the optimal conditions, the experimental yield of ethanol was 99.85 ± 4.21 g·kg-1SECS (steam-exploded cotton stalk), which was close to the theoretical predicting value, it showed the model was feasible. The research results will provide technical reference for further exploitation of cotton stalk.


Sign in / Sign up

Export Citation Format

Share Document