Systems Analysis and Life-Cycle Assessment for energy and environmental sustainability

2020 ◽  
Vol 317 ◽  
pp. 123988 ◽  
Author(s):  
Edgard Gnansounou ◽  
Murthy S. Ganti ◽  
Anoop Singh ◽  
Benoit Gabrielle
2021 ◽  
Vol 13 (9) ◽  
pp. 4948
Author(s):  
Núria Boix Rodríguez ◽  
Giovanni Formentini ◽  
Claudio Favi ◽  
Marco Marconi

Face masks are currently considered key equipment to protect people against the COVID-19 pandemic. The demand for such devices is considerable, as is the amount of plastic waste generated after their use (approximately 1.6 million tons/day since the outbreak). Even if the sanitary emergency must have the maximum priority, environmental concerns require investigation to find possible mitigation solutions. The aim of this work is to develop an eco-design actions guide that supports the design of dedicated masks, in a manner to reduce the negative impacts of these devices on the environment during the pandemic period. Toward this aim, an environmental assessment based on life cycle assessment and circularity assessment (material circularity indicator) of different types of masks have been carried out on (i) a 3D-printed mask with changeable filters, (ii) a surgical mask, (iii) an FFP2 mask with valve, (iv) an FFP2 mask without valve, and (v) a washable mask. Results highlight how reusable masks (i.e., 3D-printed masks and washable masks) are the most sustainable from a life cycle perspective, drastically reducing the environmental impacts in all categories. The outcomes of the analysis provide a framework to derive a set of eco-design guidelines which have been used to design a new device that couples protection requirements against the virus and environmental sustainability.


2013 ◽  
Vol 44 (2s) ◽  
Author(s):  
Lelia Murgia ◽  
Giuseppe Todde ◽  
Maria Caria ◽  
Antonio Pazzona

Dairy farming is constantly evolving towards more intensive levels of mechanization and automation which demand more energy consumption and result in higher economic and environmental costs. The usage of fossil energy in agricultural processes contributes to climate change both with on-farm emissions from the combustion of fuels, and by off-farm emissions due to the use of grid power. As a consequence, a more efficient use of fossil resources together with an increased use of renewable energies can play a key role for the development of more sustainable production systems. The aims of this study were to evaluate the energy requirements (fuels and electricity) in dairy farms, define the distribution of the energy demands among the different farm operations, identify the critical point of the process and estimate the amount of CO2 associated with the energy consumption. The inventory of the energy uses has been outlined by a partial Life Cycle Assessment (LCA) approach, setting the system boundaries at the farm level, from cradle to farm gate. All the flows of materials and energy associated to milk production process, including crops cultivation for fodder production, were investigated in 20 dairy commercial farms over a period of one year. Self-produced energy from renewable sources was also accounted as it influence the overall balance of emissions. Data analysis was focused on the calculation of energy and environmental sustainability indicators (EUI, CO2-eq) referred to the functional units. The production of 1 kg of Fat and Protein Corrected Milk (FPCM) required on average 0.044 kWhel and 0.251 kWhth, corresponding to a total emission of 0.085 kg CO2-eq). The farm activities that contribute most to the electricity requirements were milk cooling, milking and slurry management, while feeding management and crop cultivation were the greatest diesel fuel consuming operation and the largest in terms of environmental impact of milk production (73% of energy CO2-eq emissions). The results of the study can assist in the development of dairy farming models based on a more efficient and profitable use of the energy resources.


2013 ◽  
Vol 54 ◽  
pp. 215-228 ◽  
Author(s):  
Anne Holma ◽  
Kati Koponen ◽  
Riina Antikainen ◽  
Laurent Lardon ◽  
Pekka Leskinen ◽  
...  

Resources ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 110 ◽  
Author(s):  
Camilla Tua ◽  
Laura Biganzoli ◽  
Mario Grosso ◽  
Lucia Rigamonti

The European packaging market is forecast to grow 1.9% annually in the next years, with an increasing use of returnable packages. In this context, it is important to assess the real environmental effectiveness of the packaging re-use practice in terms of environmental impacts. This life cycle assessment aims to evaluate the environmental performances of reusable plastic crates (RPCs), which are used for the distribution of 36% of fruit and vegetables in Italy. RPCs can be re-used several times after a reconditioning process, i.e., inspection, washing, and sanitization with hot water and chemicals. The analysis was performed considering 12 impact categories, as well as the cumulative energy demand indicator and a tailor-made water consumption indicator. The results show that when the RPCs are used for less than 20 deliveries, the impacts of the life cycle are dominated by the manufacturing stage. By increasing the number of deliveries, the contribution of the reconditioning process increases, reaching 30–70% of the overall impacts for 125 uses. A minimum of three deliveries of the RPCs is required in order to perform better than an alternative system where crates of the same capacity (but 60% lighter) are single-use. The same modeling approach can be used to evaluate the environmental sustainability of other types of returnable packages, in order to have a complete overview for the Italian context and other European countries.


2014 ◽  
Vol 103 (1) ◽  
pp. 154-181 ◽  
Author(s):  
Nicole R. Weber ◽  
Johannes Strobel ◽  
Melissa A. Dyehouse ◽  
Constance Harris ◽  
Ray David ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4437
Author(s):  
Thomas Betten ◽  
Shivenes Shammugam ◽  
Roberta Graf

With an increasing share of renewable energy technologies in our energy systems, the integration of not only direct emission (from the use phase), but also the total life cycle emissions (including emissions during resource extraction, production, etc.) becomes more important in order to draw meaningful conclusions from Energy Systems Analysis (ESA). While the benefit of integrating Life Cycle Assessment (LCA) into ESA is acknowledged, methodologically sound integration lacks resonance in practice, partly because the dimension of the implications is not yet fully understood. This study proposes an easy-to-implement procedure for the integration of LCA results in ESA based on existing theoretical approaches. The need for a methodologically sound integration, including the avoidance of double counting of emissions, is demonstrated on the use case of Passivated Emitter and Rear Cell photovoltaic technology. The difference in Global Warming Potential of 19% between direct and LCA based emissions shows the significance for the integration of the total emissions into energy systems analysis and the potential double counting of 75% of the life cycle emissions for the use case supports the need for avoidance of double counting.


Sign in / Sign up

Export Citation Format

Share Document