Heterologous Production of α-Carotene in Corynebacterium glutamicum Using a Multi-copy Chromosomal Integration Method

2021 ◽  
pp. 125782
Author(s):  
Cheng Li ◽  
Charles A. Swofford ◽  
Christian Rückert ◽  
Alkiviadis Orfefs Chatzivasileiou ◽  
Rui wen Ou ◽  
...  
2021 ◽  
Author(s):  
Dominik Weixler ◽  
Oliver Goldbeck ◽  
Gerd Michael Seibold ◽  
Bernhard Johannes Eikmanns ◽  
Christian Ullrich Riedel

The bacteriocin nisin is one of the best studied antimicrobial peptides. It is widely used as a food preservative due to its antimicrobial activity against various Gram-positive bacteria including human pathogens such as Listeria monocytogenes and others. The receptor of nisin is the universal cell wall precursor lipid II, which is present in all bacteria. Thus, nisin has a broad spectrum of target organisms. Consequently, heterologous production of nisin with biotechnological relevant organisms including Corynebacterium glutamicum is difficult. Nevertheless, bacteria have evolved several mechanisms of resistance against nisin and other cationic antimicrobial peptides (CAMPs). Here, we transferred resistance mechanisms described in other organisms to C. glutamicum with the aim to improve nisin resistance. The presented approaches included: expression of (i) nisin immunity genes nisI and/or nisFEG or (ii) nisin ABC-transporter genes of Staphylococcus aureus and its homologues of C. glutamicum, (iii) genes coding for enzymes for alanylation or lysinylation of the cell envelope to introduce positive charges, and/or (iv) deletion of genes for porins of the outer membrane. None of the attempts alone increased resistance of C. glutamicum more than two-fold. To increase resistance of C. glutamicum to levels that will allow heterologous production of active nisin at relevant titers, further studies are needed.


2010 ◽  
Vol 150 ◽  
pp. 400-400 ◽  
Author(s):  
N. Wagner ◽  
A. Steinkämper ◽  
R. Biener ◽  
D. Schwartz

2020 ◽  
Author(s):  
Joana L. Rodrigues ◽  
Lígia R. Rodrigues

This highlight reviews the furanocoumarins pathway and explores the challenges to address toward their heterologous production.


2019 ◽  
Vol 476 (21) ◽  
pp. 3141-3159 ◽  
Author(s):  
Meiru Si ◽  
Can Chen ◽  
Zengfan Wei ◽  
Zhijin Gong ◽  
GuiZhi Li ◽  
...  

Abstract MarR (multiple antibiotic resistance regulator) proteins are a family of transcriptional regulators that is prevalent in Corynebacterium glutamicum. Understanding the physiological and biochemical function of MarR homologs in C. glutamicum has focused on cysteine oxidation-based redox-sensing and substrate metabolism-involving regulators. In this study, we characterized the stress-related ligand-binding functions of the C. glutamicum MarR-type regulator CarR (C. glutamicum antibiotic-responding regulator). We demonstrate that CarR negatively regulates the expression of the carR (ncgl2886)–uspA (ncgl2887) operon and the adjacent, oppositely oriented gene ncgl2885, encoding the hypothetical deacylase DecE. We also show that CarR directly activates transcription of the ncgl2882–ncgl2884 operon, encoding the peptidoglycan synthesis operon (PSO) located upstream of carR in the opposite orientation. The addition of stress-associated ligands such as penicillin and streptomycin induced carR, uspA, decE, and PSO expression in vivo, as well as attenuated binding of CarR to operator DNA in vitro. Importantly, stress response-induced up-regulation of carR, uspA, and PSO gene expression correlated with cell resistance to β-lactam antibiotics and aromatic compounds. Six highly conserved residues in CarR were found to strongly influence its ligand binding and transcriptional regulatory properties. Collectively, the results indicate that the ligand binding of CarR induces its dissociation from the carR–uspA promoter to derepress carR and uspA transcription. Ligand-free CarR also activates PSO expression, which in turn contributes to C. glutamicum stress resistance. The outcomes indicate that the stress response mechanism of CarR in C. glutamicum occurs via ligand-induced conformational changes to the protein, not via cysteine oxidation-based thiol modifications.


2015 ◽  
Vol 37 (1se) ◽  
Author(s):  
Ly Thi Bich Thuy ◽  
Nguyen Duc Bach ◽  
Frank Hannemann ◽  
Rita Bernhardt

Sign in / Sign up

Export Citation Format

Share Document