Improving hydrogen production by pH adjustment in pressurized gas fermentation

2021 ◽  
pp. 126605
Author(s):  
Gwon Woo Park ◽  
Myounghoon Moon ◽  
Jeong-Ho Park ◽  
Jae-Hwan Jo ◽  
Hyouck Ju Kim ◽  
...  
2012 ◽  
Vol 65 (2) ◽  
pp. 262-269 ◽  
Author(s):  
I. Mariakakis ◽  
J. Krampe ◽  
H. Steinmetz

A series of batch experiments investigating two different pH control strategies, initial pH adjustment and continuous pH control, have been carried out in large laboratory-scale reactors with working volumes of 30 L. In both cases, pH was varied between 5 and 7.5. Sucrose concentrations were also varied starting from 0 up to 30 g/L. Higher hydrogen production yields can be achieved by batch experiments through continuous pH control than by simple initial pH adjustment. In the case of continuous pH control, maximization of hydrogen yield was acquired for slightly acidic pH of 6.5. Continuous pH control in the neutral pH range of 7.0 and in pH lower than 6.5, induced a reduction in the hydrogen production yield. Sucrose can be completely degraded only for a pH higher than 6. Lower pH values seem to inhibit the hydrogen-producing bacteria. Under the conditions of continuous pH adjustment at pH 6.5 and a sucrose concentration of 25 g/L the maximum hydrogen yield of 1.79 mol H2/mol hexose was obtained. These conditions could be applied for the batch start-up of large fermentors.


2013 ◽  
Vol 295-298 ◽  
pp. 1683-1686
Author(s):  
Huan Li ◽  
Shu Xin Zou

A single-phase reactor was applied to food waster digestion for hydrogen production in order to test its feasibility. Different solid retention time (SRT) and pH adjustment modes were tried in a series of semi-continuous experiments. The results showed that it was necessary to take some precautions including a long SRT and a proper pH adjustment mode so as to avoid the excessive acidification in single-phase digesters. When lime milk was added into the digester to adjust pH to about 7 once a day, the food waste digester, which had a SRT of 20 days and a feed concentration of 4%, can produce hydrogen steadily. The hydrogen content was 27.6-51.3% and the degradation rate of food waste organic matter was 54%.


1971 ◽  
Vol 10 (03) ◽  
pp. 245-251 ◽  
Author(s):  
P. Richards ◽  
W. C. Eckelman

SummaryThe full potential use of technetium has not been achieved despite its ideal physical properties, dosimetry and availability because of the complex preparations required for 99mTc radiopharmaceuticals. One of the goals of our work is to develop techniques for the preparation of high-purity 99mTc compounds which can be easily prepared, ideally by adding pertechnetate to a prepared solution.The use of stannous ion as reducing agent for technetium makes it possible to obtain such one-step, high-purity products. All non-radioactive components can be premixed in a single vial before addition of the radioactive pertechnetate. No final pH adjustment, further chemical manipulation or purification is required.Procedures for two instantly labeled compounds have been developed to date: 99mTc DTPA and 99mTc HSA. The 99mTc DTPA is prepared by adding pertechnetate to a previously prepared solution of stannous ion and CaNa3 DTPA which has been stored at pH 4. The 99mTc HSA is prepared by adding pertechnetate to a solution of stannous ion and HSA. The parametric variations and analytical techniques involved in formulating these procedures are described. It appears that development of kits for other biologically interesting compounds may be possible using similar procedures.


1983 ◽  
Vol 22 (05) ◽  
pp. 246-250 ◽  
Author(s):  
M. Al-Hilli ◽  
H. M. A. Karim ◽  
M. H. S. Al-Hissoni ◽  
M. N. Jassim ◽  
N. H. Agha

Gelchromatography column scanning has been used to study the fractions of reduced hydrolyzed 99mTc, 99mTc-pertechnetate and 99mTc-chelate in a 99mTc-glucoheptonate (GH) preparation. A stable high labelling yield of 99mTc-GH complex in the radiopharmaceutical has been obtained with a concentration of 40-50 mg of glucoheptonic acid-calcium salt and not less than 0.45 mg of SnCl2 2 H2O at an optimal pH between 6.5 and 7.0. The stability of the complex has been found significantly affected when sodium hydroxide solution was used for the pH adjustment. However, an alternative procedure for final pH adjustment of the preparation has been investigated providing a stable complex for the usual period of time prior to the injection. The organ distribution and the blood clearance data of 99mTc-GH in rabbits were relatively similar to those reported earlier. The mean concentration of the radiopharmaceutical in both kidneys has been studied in normal subjects for one hour with a scintillation camera and the results were satisfactory.


2020 ◽  
pp. 124-135
Author(s):  
I. N. G. Wardana ◽  
N. Willy Satrio

Tofu is main food in Indonesia and its waste generally pollutes the waters. This study aims to change the waste into energy by utilizing the electric charge in the pores of tofu waste to produce hydrogen in water. The tofu pore is negatively charged and the surface surrounding the pore has a positive charge. The positive and negative electric charges stretch water molecules that have a partial charge. With the addition of a 12V electrical energy during electrolysis, water breaks down into hydrogen. The test was conducted on pre-treated tofu waste suspension using oxalic acid. The hydrogen concentration was measured by a MQ-8 hydrogen sensor. The result shows that the addition of turmeric together with sodium bicarbonate to tofu waste in water, hydrogen production increased more than four times. This is due to the fact that magnetic field generated by delocalized electron in aromatic ring in turmeric energizes all electrons in the pores of tofu waste, in the sodium bicarbonate, and in water that boosts hydrogen production. At the same time the stronger partial charge in natrium bicarbonate shields the hydrogen proton from strong attraction of tofu pores. These two combined effect are very powerful for larger hydrogen production in water by tofu waste.


Sign in / Sign up

Export Citation Format

Share Document