The application of DNA polymerases and Cas9 as representative of DNA-modifying enzymes group in DNA sensor design (review)

2021 ◽  
Vol 175 ◽  
pp. 112867
Author(s):  
Julija Dronina ◽  
Urte Samukaite Bubniene ◽  
Arunas Ramanavicius
2018 ◽  
Vol 265 ◽  
pp. 514-521 ◽  
Author(s):  
Sakda Jampasa ◽  
Weena Siangproh ◽  
Rawiwan Laocharoensuk ◽  
Pattamawadee Yanatatsaneejit ◽  
Tirayut Vilaivan ◽  
...  

2015 ◽  
Vol 87 (7) ◽  
pp. 707-715 ◽  
Author(s):  
Anupama R. Gulur Srinivas ◽  
David Barker ◽  
Jadranka Travas-Sejdic

AbstractThe development of highly sensitive and selective DNA sensors has fuelled applications in a wide range of fields including medical diagnostics, forensics, biodefense, food contamination and environment monitoring. We demonstrate a novel superquenching based DNA sensor with “switch-on” readout using poly(p-phenylenevinylene) (PPV) coated magnetic beads (PPV-MagSi) and quencher functionalized tentacle probes (TP). The sensor design utilizes signal amplification properties of PPV and cooperativity of TPs to monitor hybridization of target oligonucleotides (ONs). The switch-on sensor exhibits excellent sensitivity and selectively discriminates mismatches in the target DNA sequence. Two novel anionic PPVs – poly (6,6′-((2-methyl-5-((E)-4-((E)-prop-1-en-1-yl)styryl)-1,4-phenylene)-bis(oxy) dihexanoic acid) (PMDH) and poly (6,6′-((2-((E)-2,5-bis(2-methoxyethoxy)-4-((E)-prop-1-en-1-yl)styryl)-5-methyl-1,4-phenylene)-bis-(oxy)) di-hexanoic acid) (PDMonoG) were tested and compared against each other as part of the sensor design. The employed hairpin TPs possess further advantages of avoiding labelling of target ON, increased selectivity and sensitivity; faster assay time, and capability of magnetically controlled deployment and separation of PPV-MagSi beads.


Author(s):  
FRANCISCO ARTHUR BONFIM AZEVEDO ◽  
Daniela Vacarini de Faria ◽  
Marcos Maximo ◽  
Mauricio Donadon

2020 ◽  
Vol 2 (4) ◽  
pp. 89-92
Author(s):  
Muhammad Amir ◽  
Sabeera Afzal ◽  
Alia Ishaq

Polymerases were revealed first in 1970s. Most important to the modest perception the enzyme responsible for nuclear DNA replication that was pol , for DNA repair pol and for mitochondrial DNA replication pol  DNA construction and renovation done by DNA polymerases, so directing both the constancy and discrepancy of genetic information. Replication of genome initiate with DNA template-dependent fusion of small primers of RNA. This preliminary phase in replication of DNA demarcated as de novo primer synthesis which is catalyzed by specified polymerases known as primases. Sixteen diverse DNA-synthesizing enzymes about human perspective are devoted to replication, reparation, mutilation lenience, and inconsistency of nuclear DNA. But in dissimilarity, merely one DNA polymerase has been called in mitochondria. It has been suggest that PrimPol is extremely acting the roles by re-priming DNA replication in mitochondria to permit an effective and appropriate way replication to be accomplished. Investigations from a numeral of test site have significantly amplified our appreciative of the role, recruitment and regulation of the enzyme during DNA replication. Though, we are simply just start to increase in value the versatile roles that play PrimPol in eukaryote.


Sign in / Sign up

Export Citation Format

Share Document