A new DNA sensor design for the simultaneous detection of HPV type 16 and 18 DNA

2018 ◽  
Vol 265 ◽  
pp. 514-521 ◽  
Author(s):  
Sakda Jampasa ◽  
Weena Siangproh ◽  
Rawiwan Laocharoensuk ◽  
Pattamawadee Yanatatsaneejit ◽  
Tirayut Vilaivan ◽  
...  
2015 ◽  
Vol 87 (7) ◽  
pp. 707-715 ◽  
Author(s):  
Anupama R. Gulur Srinivas ◽  
David Barker ◽  
Jadranka Travas-Sejdic

AbstractThe development of highly sensitive and selective DNA sensors has fuelled applications in a wide range of fields including medical diagnostics, forensics, biodefense, food contamination and environment monitoring. We demonstrate a novel superquenching based DNA sensor with “switch-on” readout using poly(p-phenylenevinylene) (PPV) coated magnetic beads (PPV-MagSi) and quencher functionalized tentacle probes (TP). The sensor design utilizes signal amplification properties of PPV and cooperativity of TPs to monitor hybridization of target oligonucleotides (ONs). The switch-on sensor exhibits excellent sensitivity and selectively discriminates mismatches in the target DNA sequence. Two novel anionic PPVs – poly (6,6′-((2-methyl-5-((E)-4-((E)-prop-1-en-1-yl)styryl)-1,4-phenylene)-bis(oxy) dihexanoic acid) (PMDH) and poly (6,6′-((2-((E)-2,5-bis(2-methoxyethoxy)-4-((E)-prop-1-en-1-yl)styryl)-5-methyl-1,4-phenylene)-bis-(oxy)) di-hexanoic acid) (PDMonoG) were tested and compared against each other as part of the sensor design. The employed hairpin TPs possess further advantages of avoiding labelling of target ON, increased selectivity and sensitivity; faster assay time, and capability of magnetically controlled deployment and separation of PPV-MagSi beads.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2551
Author(s):  
Nikolay L. Kazanskiy ◽  
Svetlana N. Khonina ◽  
Muhammad A. Butt ◽  
Andrzej Kaźmierczak ◽  
Ryszard Piramidowicz

A multipurpose plasmonic sensor design based on a metal-insulator-metal (MIM) waveguide is numerically investigated in this paper. The proposed design can be instantaneously employed for biosensing and temperature sensing applications. The sensor consists of two simple resonant cavities having a square and circular shape, with the side coupled to an MIM bus waveguide. For biosensing operation, the analytes can be injected into the square cavity while a thermo-optic polymer is deposited in the circular cavity, which provides a shift in resonance wavelength according to the variation in ambient temperature. Both sensing processes work independently. Each cavity provides a resonance dip at a distinct position in the transmission spectrum of the sensor, which does not obscure the analysis process. Such a simple configuration embedded in the single-chip can potentially provide a sensitivity of 700 nm/RIU and −0.35 nm/°C for biosensing and temperature sensing, respectively. Furthermore, the figure of merit (FOM) for the biosensing module and temperature sensing module is around 21.9 and 0.008, respectively. FOM is the ratio between the sensitivity of the device and width of the resonance dip. We suppose that the suggested sensor design can be valuable in twofold ways: (i) in the scenarios where the testing of the biological analytes should be conducted in a controlled temperature environment and (ii) for reducing the influence on ambient temperature fluctuations on refractometric measurements in real-time mode.


2010 ◽  
Vol 26 (4) ◽  
pp. 1736-1742 ◽  
Author(s):  
Deng Zhang ◽  
Michael C. Huarng ◽  
Evangelyn C. Alocilja

Sign in / Sign up

Export Citation Format

Share Document