Combined hot-air and microwave-vacuum drying for improving drying uniformity of mango slices based on hyperspectral imaging visualisation of moisture content distribution

2017 ◽  
Vol 156 ◽  
pp. 108-119 ◽  
Author(s):  
Yuan-Yuan Pu ◽  
Da-Wen Sun
Author(s):  
Dóra Székely ◽  
Klaudia Vidák ◽  
Diána Furulyás ◽  
Ákos Ribárszki ◽  
Mónika Stéger-Máté

The aim of this work was to study the influence of atmospheric, vacuum and microwave vacuum drying methods on the quality of dried beetroots. Three different red beetroot species ('Alto F1', 'Cylindra', 'Detroit') were chosen in this study. The microwave vacuum method reduced the total time of drying and decreased the shrinkage compared to the other drying methods. The quality of the dehydrated material was described by its color change, antioxidant capacity, total polyphenol, betacyanin, betaxanthin and each phenolic acids content. The attempts were made to suggest the microwave vacuum method for red beetroot samples as a gentle drying technology to reach a special texture that is favoured by costumers. During the experiments relevant differences could be observed between the investigated beetroot species on the effect of different drying methods. According to the examined parameters the 'Cylindra' species proved the most appropriate beetroot variety for microwave vacuum drying. Based on the results, the combined methods with hot-air at 60 °C followed by microwave vacuum finish drying was the most suitable assay to preserve the investigated parameters in the highest amount.


Forests ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1115
Author(s):  
Lin Yang ◽  
Honghai Liu

Wood dried using supercritical CO2 has unique properties because water is removed directly from the cell lumens through the cycling between supercritical and gas phases. Eucalyptus urophydis green wood was dried by supercritical CO2 at 50 °C and pressure of 10, 20, and 30 MPa; the effect of supercritical CO2 drying on moisture content distribution and transfer, as well as the permeability and extractive content of the wood, was investigated. The results showed that the supercritical CO2 drying rate was high, showing the highest drying rate at 20 MPa and the lowest at 10 MPa. Drying rate increased with pressure below 20 MPa in this study; drying rate represented no positive relation to pressure over 20 Mpa. Moisture content distribution was more uneven in the low-pressure drying conditions and in the middle transverse section of the specimens. The moisture content gradient in tangential was greater than that in longitudinal, especially for the drying of 10 MPa, indicating that water was removed mainly in the former direction of wood. More extractives were removed from wood at higher pressure during supercritical CO2 drying. Bordered pits were broken up more at higher pressure conditions. The decreased extract yields and increased amount of opened bordered pits increased the permeability of the wood after supercritical CO2 drying.


Sign in / Sign up

Export Citation Format

Share Document