scholarly journals Effect of positive end-expiratory pressure on lung injury and haemodynamics during experimental acute respiratory distress syndrome treated with extracorporeal membrane oxygenation and near-apnoeic ventilation

Author(s):  
Joaquin Araos ◽  
Leyla Alegria ◽  
Aline Garcia ◽  
Pablo Cruces ◽  
Dagoberto Soto ◽  
...  
2020 ◽  
Vol 13 (2) ◽  
pp. 148-155
Author(s):  
Christine Hartner ◽  
Jacqueline Ochsenreither ◽  
Kenneth Miller ◽  
Michael Weiss

BackgroundAcute respiratory distress syndrome (ARDS) is characterized by an acute, diffuse, inflammatory lung injury, leading to increased alveolar capillary permeability, increased lung weight, and loss of aerated lung tissue (Fan, Brodie, & Slutsky, 2018). Primary treatment for ARDS is artificial mechanical ventilation (AMV) (Wu, Huang, Wu, Wang, & Lin, 2016). Given recent advances in technology, the use of veno-venous extracorporeal membrane oxygenation (VV-ECMO) to treat severe ARDS is growing rapidly (Combes et al., 2014).ObjectiveThis 49-month quantitative, retrospective inpatient EMR chart review compared if cannulation with VV-ECMO up to and including 48 hours of admission and diagnosis in adult patients 30 to 65 years of age diagnosed with ARDS, decreased duration on AMV, as compared to participants who were cannulated after 48 hours of admission and diagnosis with ARDS.MethodsA total of 110 participants were identified as receiving VV-ECMO during the study timeframe. Of the 58 participants who met all inclusion criteria, 39 participants were cannulated for VV-ECMO within 48 hours of admission and diagnosis with ARDS, and 19 participants were cannulated with VV-ECMO after 48 hours of admission and diagnosis with ARDS.ResultsData collected identified no statistically significant (p < 0.579) difference in length of days on AMV between participant groups.ConclusionsFurther studies are needed to determine if earlier initiation of VV-ECMO in adult patients with ARDS decrease time on AMV.Implications for NursingAlthough the results related to length of time on AMV did not produce statistical significance, the decreased duration of AMV in the participants who were cannulated within 48 hours (21 days vs. 27 days) may support several benefits associated with this participant population including increased knowledge of healthcare providers, decreased lung injury, earlier discharge which decreases hospital and patient cost, ability for patients to communicate sooner, decreased risk of pulmonary infection, decreased length of stay, decreased cost, and improved patient and family satisfaction.


2016 ◽  
Vol 26 (6) ◽  
pp. 747-762 ◽  
Author(s):  
Summer Paolone

Despite advances in mechanical ventilation, severe acute respiratory distress syndrome (ARDS) is associated with high morbidity and mortality rates ranging from 26% to 58%. Extracorporeal membrane oxygenation (ECMO) is a modified cardiopulmonary bypass circuit that serves as an artificial membrane lung and blood pump to provide gas exchange and systemic perfusion for patients when their own heart and lungs are unable to function adequately. ECMO is a complex network that provides oxygenation and ventilation and allows the lungs to rest and recover from respiratory failure while minimizing iatrogenic ventilator-induced lung injury. In critical care settings, ECMO is proven to improve survival rates and outcomes in patients with severe ARDS. This review defines severe ARDS; describes the ECMO circuit; and discusses recent research, optimal use of the ECMO circuit, limitations of therapy including potential complications, economic impact, and logistical factors; and discusses future research considerations.


2021 ◽  
Vol 5 (10) ◽  
pp. 953-960
Author(s):  
Dini Ardiyani ◽  
Zen Ahmad

Acute lung injury and acute respiratory distress syndrome are characterized by rapid-onset respiratory failure following a variety of direct and indirect insults to the parenchyma or vasculature of the lungs. Extracorporeal membrane oxygenation is a form of extracorporeal life support where an external artificial circulator carries venous blood from the patient to a gas exchange device (oxygenator) where blood becomes enriched with oxygen and has carbon dioxide removed. This blood then re-enters the patients circulation. The potential advantages of ECMO over conventional manajement may extend beyond its role in supporting patients with ARDS. ECMO may facilitate and enhance the application of lung-protective ventilation by minimizing ventilator-induced lung injury.


Perfusion ◽  
2020 ◽  
pp. 026765912094672
Author(s):  
Chengfen Yin ◽  
Xinjing Gao ◽  
Chao Cao ◽  
Lei Xu ◽  
Xing Lu

Background: Patients with acute respiratory distress syndrome supported with veno-venous extracorporeal membrane oxygenation benefit from higher positive end-expiratory pressure combined with conventional ventilation during the early extracorporeal membrane oxygenation period. The role of incremental positive end-expiratory pressure titration in patients with severe acute respiratory distress syndrome supported with veno-venous extracorporeal membrane oxygenation remains unclear. This study aimed to determine the preferred method for setting positive end-expiratory pressure in patients with severe acute respiratory distress syndrome on veno-venous extracorporeal membrane oxygenation support. Methods: We retrospectively reviewed all subjects supported with veno-venous extracorporeal membrane oxygenation for severe acute respiratory distress syndrome from 2009 to 2019 in the intensive care units in Tianjin Third Central Hospital. Subjects were divided into two groups according to the positive end-expiratory pressure titration method used: P-V curve (quasi-static pressure-volume curve-guided positive end-expiratory pressure setting) group or Crs (respiratory system compliance-guided positive end-expiratory pressure setting) group. Results: Forty-three subjects were included in the clinical outcome analysis: 20 in the P-V curve group and 23 in the Crs group. Initial positive end-expiratory pressure levels during veno-venous extracorporeal membrane oxygenation were similar in both groups. Incidence rates of barotrauma and hemodynamic events were significantly lower in the Crs group (all p < 0.05). Mechanical ventilation duration, intensive care unit length of stay, and hospital length of stay were significantly shorter in the Crs group than the P-V curve group (all p < 0.05). Subjects in the Crs group showed non-significant improvements in the duration of extracorporeal membrane oxygenation support and 28-day mortality (p > 0.05). Conclusion: Respiratory system compliance-guided positive end-expiratory pressure setting may lead to more optimal clinical outcomes for patients with severe acute respiratory distress syndrome supported by veno-venous extracorporeal membrane oxygenation. Moreover, the operation is simple, safe, and convenient in clinical practice.


2021 ◽  
Vol 5 (4) ◽  
pp. 890-897
Author(s):  
Dini Ardiyani ◽  
Zen Ahmad

Acute lung injury and acute respiratory distress syndrome are characterized by rapid-onset respiratory failure following a variety of direct and indirect insults to the parenchyma or vasculature of the lungs. Extracorporeal membrane oxygenation is a form of extracorporeal life support where an external artificial circulator carries venous blood from the patient to a gas exchange device (oxygenator) where blood becomes enriched with oxygen and has carbon dioxide removed. This blood then re-enters the patients circulation. The potential advantages of ECMO over conventional manajement may extend beyond its role in supporting patients with ARDS. ECMO may facilitate and enhance the application of lung-protective ventilation by minimizing ventilator-induced lung injury.


Sign in / Sign up

Export Citation Format

Share Document