Coumarin derivatives as potential inhibitors of acetylcholinesterase: Synthesis, molecular docking and biological studies

2016 ◽  
Vol 24 (19) ◽  
pp. 4587-4599 ◽  
Author(s):  
Shaffali Singla ◽  
Poonam Piplani
2020 ◽  
Author(s):  
Akhilesh Kumar Maurya ◽  
Nidhi Mishra

Abstract Coronavirus Disease (COVID-19) is recently declared pandemic (WHO) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Currently, there is no specific drug for the therapy of COVID-19. In the present study, in silico study have been done to find out possible inhibitors of SARS CoV-2. Coumarin derivatives with 2755 compounds were virtually screen against methyltransferase-stimulatory factor complex of NSP16 and NSP10, NSP15 Endoribonuclease, ADP ribose phosphatase (ADRP)of NSP3 and protease enzymes of SARS CoV-2. Docked top five compounds showed good docking scores and free energy of binding with the respective receptors. ADME/T analysis of docked compound shows the docked ligands are showing drug-likeness properties.


Steroids ◽  
2015 ◽  
Vol 104 ◽  
pp. 95-110 ◽  
Author(s):  
Manuela E. García ◽  
José L. Borioni ◽  
Valeria Cavallaro ◽  
Marcelo Puiatti ◽  
Adriana B. Pierini ◽  
...  

2021 ◽  
Vol 19 (1) ◽  
pp. 772-784
Author(s):  
Moamen S. Refat ◽  
Ahmed Gaber ◽  
Walaa F. Alsanie ◽  
Mohamed I. Kobeasy ◽  
Rozan Zakaria ◽  
...  

Abstract This article aimed at the synthesis and molecular docking assessment of new diimine Schiff base ligand, namely 2-((E)-(2-((Z)-2-(4-chlorophenyl)-2-hydroxyvinyl)hydrazono) methyl)-6-methoxyphenol (methoxy-diim), via the condensation of 1-(4-chloro-phenyl)-2-hydrazino-ethenol compound with 2-((E)-(2-((Z)-2-(4-chlorophenyl)-2-hydroxy vinyl) hydrazono)methyl)-6-methoxyphenol in acetic acid as well as the preparation of new binuclear complexes of Co(ii), Ni(ii), Cu(ii), and Zn(ii). The following synthesized complexes were prepared in a ratio of 2:1 (metal/ligand). The 1H-NMR, UV-Vis, and FTIR spectroscopic data; molar conductivity measurements; and microanalytical, XRD, TGA/DTG, and biological studies were carried out to determine the molecular structure of these complexes. According to the spectroscopic analysis, the two central metal ions were coordinated with the diamine ligand via the nitrogen of the hydrazine and oxygen of the hydroxyl groups for the first metal ions and via the nitrogen of the hydrazine and oxygen of the phenol group for the second metal ions. Molecular docking for the free ligand was carried out against the breast cancer 3hb5-oxidoreductase and the 4o1v-protein binding kidney cancer and COVID-19 protease, and good results were obtained.


Heliyon ◽  
2021 ◽  
pp. e06603
Author(s):  
Ayoub Khaldan ◽  
Soukaina Bouamrane ◽  
Fatima En-Nahli ◽  
Reda El-mernissi ◽  
Khalil El khatabi ◽  
...  

2021 ◽  
Vol 45 (1) ◽  
Author(s):  
P. M. Aja ◽  
P. C. Agu ◽  
E. M. Ezeh ◽  
J. N. Awoke ◽  
H. A. Ogwoni ◽  
...  

Abstract Background Cancer chemotherapy is difficult because current medications for the treatment of cancer have been linked to a slew of side effects; as a result, researchers are tasked with developing greener cancer chemotherapies. Moringa oleifera has been reported with several bioactive compounds which confirm its application for various ailments by traditional practitioners. In this study, we aim to prospect the therapeutic potentials of M. oleifera phytocompounds against cancer proliferation as a step towards drug discovery using a computational approach. Target proteins: dihydrofolate reductase (DHFR) and B-Cell Lymphoid-2 (BCL-2), were retrieved from the RCSB PDB web server. Sixteen and five phytocompounds previously reported in M. oleifera leaves (ML) and seeds (MS), respectively, by gas chromatography–mass spectrometry were synthesized and used in the molecular docking study. For accurate prediction of binding sites of the target proteins; standard inhibitors, Methotrexate (MTX) for DHFR, and Venetoclax (VTC) for BCL-2, were docked together with the test compounds. We further predicted the ADMET profile of the potential inhibitors for an insight into their chance of success as candidates in drug discovery. Results Results for the binding affinities, docking poses, and the interactions showed that ML2, ML4-6, ML8-15, and MS1-5 are potential inhibitors of DHFR and BCL-2, respectively. In the ADMET profile, ML2 and ML4 showed the best drug-likeness by non-violation of Lipski Rule of Five. ML4-6, ML8, ML11, ML14-15, and MS1, MS3-5 exhibit high GI absorption; ML2, ML4-6, ML8, MS1, and MS5 are blood–brain barrier permeants. ML2, ML4, ML9, ML13, and MS2 do not interfere with any of the CYP450 isoforms. The toxicity profile showed that all the potential inhibitors are non-carcinogenic and non-hERG I (human ether-a-go-go related gene I) inhibitors. ML4, ML11, and MS4 are hepatotoxic and ML7, ML10, and MS4 are hERG II inhibitors. A plethora of insights on the toxic endpoints and lethal concentration values showed that ML5, ML13, and MS2 are comparatively less lethal than other potential inhibitors. Conclusion This study has demonstrated that M. oleifera phytocompounds are potential inhibitors of the disease proteins involved in cancer proliferation, thus, an invaluable step toward the discovery of cancer chemotherapy with lesser limitations.


RSC Advances ◽  
2021 ◽  
Vol 11 (38) ◽  
pp. 23654-23663
Author(s):  
Omnia Hesham Abdelhafez ◽  
John Refaat Fahim ◽  
Ramy R. El Masri ◽  
M. Alaraby Salem ◽  
Samar Yehia Desoukey ◽  
...  

The cytotoxic potential of the crude extract, different fractions, and green synthesized nanoparticles of the soft coral Nephthea sp. was studied, supported by LC-HR-ESI-MS metabolomics analysis and molecular docking of the dereplicated compounds.


2021 ◽  
pp. 131007
Author(s):  
Norhadi Mohamad ◽  
Phua Yoong Hui ◽  
Mohamad Hafizi Abu Bakar ◽  
Mohammad Tasyriq Che Omar ◽  
Habibah A. Wahab ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document