New branched amino acids for high affinity dendrimeric DC-SIGN ligands

2018 ◽  
Vol 26 (5) ◽  
pp. 1006-1015 ◽  
Author(s):  
Laurent Cattiaux ◽  
Vanessa Porkolab ◽  
Franck Fieschi ◽  
Jean-Maurice Mallet
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Babar Ali ◽  
Qazi Mohammad Sajid Jamal ◽  
Showkat R. Mir ◽  
Saiba Shams ◽  
Mohammad Amjad Kamal

AbstractSince 3000 B.C., evergreen plant Thea sinensis (Theaceae) is used both as a social and medicinal beverage. Leaves of T. sinensis contain amino acids, vitamins, caffeine, polysaccharides and polyphenols. Most of the natural medicinal actions of tea are due to the availability and abundance of polyphenols mainly catechins. It has also been stated that some catechins were absorbed more rapidly than other compounds after the oral administration of tea and could increase the bio-enhancing activities of anticancer drugs by inhibiting P-glycoprotein (P-gp). The results of the molecular docking showed that polyphenols bind easily to the active P-gp site. All compounds exhibited fluctuating binding affinity ranged from −11.67 to −8.36 kcal/mol. Observed binding energy required for theaflavin to bind to P-gp was lowest (−11.67 kcal/mol). The obtained data that supports all the selected polyphenols inhibited P-gp and therefore may enhance the bioavailability of drugs. This study may play a vital role in finding hotspots in P-gp and eventually may be proved useful in designing compounds with high affinity and specificity to the protein.


2021 ◽  
Author(s):  
Amit Ketkar ◽  
Lane Smith ◽  
Callie Johnson ◽  
Alyssa Richey ◽  
Makayla Berry ◽  
...  

Abstract We previously reported that human Rev1 (hRev1) bound to a parallel-stranded G-quadruplex (G4) from the c-MYC promoter with high affinity. We have extended those results to include other G4 motifs, finding that hRev1 exhibited stronger affinity for parallel-stranded G4 than either anti-parallel or hybrid folds. Amino acids in the αE helix of insert-2 were identified as being important for G4 binding. Mutating E466 and Y470 to alanine selectively perturbed G4 binding affinity. The E466K mutant restored wild-type G4 binding properties. Using a forward mutagenesis assay, we discovered that loss of hRev1 increased G4 mutation frequency >200-fold compared to the control sequence. Base substitutions and deletions occurred around and within the G4 motif. Pyridostatin (PDS) exacerbated this effect, as the mutation frequency increased >700-fold over control and deletions upstream of the G4 site more than doubled. Mutagenic replication of G4 DNA (±PDS) was partially rescued by wild-type and E466K hRev1. The E466A or Y470A mutants failed to suppress the PDS-induced increase in G4 mutation frequency. These findings have implications for the role of insert-2, a motif conserved in vertebrates but not yeast or plants, in Rev1-mediated suppression of mutagenesis during G4 replication.


2000 ◽  
Vol 287 (3) ◽  
pp. 231-235 ◽  
Author(s):  
Jun Nakauchi ◽  
Hirotaka Matsuo ◽  
Do Kyung Kim ◽  
Akiteru Goto ◽  
Arthit Chairoungdua ◽  
...  

1993 ◽  
Vol 268 (20) ◽  
pp. 14842-14849
Author(s):  
J. Bertran ◽  
A. Werner ◽  
J. Chillarón ◽  
V. Nunes ◽  
J. Biber ◽  
...  

Nature ◽  
1975 ◽  
Vol 253 (5491) ◽  
pp. 481-482 ◽  
Author(s):  
LEVI ◽  
RAITERI

2009 ◽  
Vol 385 (3) ◽  
pp. 912-923 ◽  
Author(s):  
Jana R. Herrmann ◽  
Johanna C. Panitz ◽  
Stephanie Unterreitmeier ◽  
Angelika Fuchs ◽  
Dmitrij Frishman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document