3-Aryl-4-hydroxyquinolin-2(1H)-one derivatives as type I fatty acid synthase inhibitors

2006 ◽  
Vol 16 (17) ◽  
pp. 4620-4623 ◽  
Author(s):  
Alexey Rivkin ◽  
Yoona R. Kim ◽  
Mark T. Goulet ◽  
Nathan Bays ◽  
Armetta D. Hill ◽  
...  
2015 ◽  
Vol 11 (9) ◽  
pp. 2464-2472 ◽  
Author(s):  
Dan Coursolle ◽  
Jiazhang Lian ◽  
John Shanklin ◽  
Huimin Zhao

An orthogonal type I FAS was introduced into E. coli to increase the production of long chain alcohols and alkanes.


2020 ◽  
Vol 29 (2) ◽  
pp. 589-605 ◽  
Author(s):  
Alexander Rittner ◽  
Karthik S. Paithankar ◽  
Aaron Himmler ◽  
Martin Grininger

Biochemistry ◽  
1996 ◽  
Vol 35 (38) ◽  
pp. 12267-12274 ◽  
Author(s):  
Christopher J. Child ◽  
Jonathan B. Spencer ◽  
Pamela Bhogal ◽  
Peter M. Shoolingin-Jordan

2000 ◽  
Vol 105 (2) ◽  
pp. 253-260 ◽  
Author(s):  
Guan Zhu ◽  
Mary J Marchewka ◽  
Keith M Woods ◽  
Steve J Upton ◽  
Janet S Keithly

2007 ◽  
Vol 283 (1) ◽  
pp. 518-528 ◽  
Author(s):  
Eliza Ploskoń ◽  
Christopher J. Arthur ◽  
Simon E. Evans ◽  
Christopher Williams ◽  
John Crosby ◽  
...  

ChemInform ◽  
2012 ◽  
Vol 43 (8) ◽  
pp. no-no
Author(s):  
Joerg T. Kley ◽  
Juergen Mack ◽  
Bradford Hamilton ◽  
Stefan Scheuerer ◽  
Norbert Redemann

2007 ◽  
Vol 85 (6) ◽  
pp. 649-662 ◽  
Author(s):  
David M. Byers ◽  
Huansheng Gong

Acyl carrier protein (ACP) is a universal and highly conserved carrier of acyl intermediates during fatty acid synthesis. In yeast and mammals, ACP exists as a separate domain within a large multifunctional fatty acid synthase polyprotein (type I FAS), whereas it is a small monomeric protein in bacteria and plastids (type II FAS). Bacterial ACPs are also acyl donors for synthesis of a variety of products, including endotoxin and acylated homoserine lactones involved in quorum sensing; the distinct and essential nature of these processes in growth and pathogenesis make ACP-dependent enzymes attractive antimicrobial drug targets. Additionally, ACP homologues are key components in the production of secondary metabolites such as polyketides and nonribosomal peptides. Many ACPs exhibit characteristic structural features of natively unfolded proteins in vitro, with a dynamic and flexible conformation dominated by 3 parallel α helices that enclose the thioester-linked acyl group attached to a phosphopantetheine prosthetic group. ACP conformation may also be influenced by divalent cations and interaction with partner enzymes through its “recognition” helix II, properties that are key to its ability to alternately sequester acyl groups and deliver them to the active sites of ACP-dependent enzymes. This review highlights recent progress in defining how the structural features of ACP are related to its multiple carrier roles in fatty acid metabolism.


Sign in / Sign up

Export Citation Format

Share Document