The role of estrogen receptor-αlpha and its activation function 1 (af-1) for growth plate closure in female mice

Bone ◽  
2012 ◽  
Vol 50 ◽  
pp. S59
Author(s):  
A.E. Börjesson⁎ ◽  
S.H. Windahl ◽  
E. Karimian ◽  
E.E. Eriksson ◽  
M.K. Lagerquist ◽  
...  
2012 ◽  
Vol 302 (11) ◽  
pp. E1381-E1389 ◽  
Author(s):  
A. E. Börjesson ◽  
S. H. Windahl ◽  
E. Karimian ◽  
E. E. Eriksson ◽  
M. K. Lagerquist ◽  
...  

High estradiol levels in late puberty induce growth plate closure and thereby cessation of growth in humans. In mice, the growth plates do not fuse after sexual maturation, but old mice display reduced longitudinal bone growth and high-dose estradiol treatment induces growth plate closure. Estrogen receptor (ER)-α stimulates gene transcription via two activation functions (AFs), AF-1 and AF-2. To evaluate the role of ERα and its AF-1 for age-dependent reduction in longitudinal bone growth and growth plate closure, female mice with inactivation of ERα (ERα−/−) or ERαAF-1 (ERαAF-10) were evaluated. Old (16- to 19-mo-old) female ERα−/− mice showed continued substantial longitudinal bone growth, resulting in longer bones (tibia: +8.3%, P < 0.01) associated with increased growth plate height (+18%, P < 0.05) compared with wild-type (WT) mice. In contrast, the longitudinal bone growth ceased in old ERαAF-10 mice (tibia: −4.9%, P < 0.01). Importantly, the proximal tibial growth plates were closed in all old ERαAF-10 mice while they were open in all WT mice. Growth plate closure was associated with a significantly altered balance between chondrocyte proliferation and apoptosis in the growth plate. In conclusion, old female ERα−/− mice display a prolonged and enhanced longitudinal bone growth associated with increased growth plate height, resembling the growth phenotype of patients with inactivating mutations in ERα or aromatase. In contrast, ERαAF-1 deletion results in a hyperactive ERα, altering the chondrocyte proliferation/apoptosis balance, leading to growth plate closure. This suggests that growth plate closure is induced by functions of ERα that do not require AF-1 and that ERαAF-1 opposes growth plate closure.


2003 ◽  
Vol 19 (1) ◽  
pp. 72-77 ◽  
Author(s):  
AS Chagin ◽  
MK Lindberg ◽  
N Andersson ◽  
S Moverare ◽  
J-Å Gustafsson ◽  
...  

Endocrinology ◽  
2015 ◽  
Vol 156 (3) ◽  
pp. 1111-1120 ◽  
Author(s):  
Sharon L. Dubois ◽  
Maricedes Acosta-Martínez ◽  
Mary R. DeJoseph ◽  
Andrew Wolfe ◽  
Sally Radovick ◽  
...  

Abstract Hypothalamic kisspeptin (Kiss1) neurons express estrogen receptor α (ERα) and exert control over GnRH/LH secretion in female rodents. It has been proposed that estradiol (E2) activation of ERα in kisspeptin neurons in the arcuate nucleus (ARC) suppresses GnRH/LH secretion (negative feedback), whereas E2 activation of ERα in kisspeptin neurons in the anteroventral periventricular nucleus (AVPV) mediates the release of preovulatory GnRH/LH surges (positive feedback). To test these hypotheses, we generated mice bearing kisspeptin cell–specific deletion of ERα (KERαKO) and treated them with E2 regimens that evoke either negative or positive feedback actions on GnRH/LH secretion. Using negative feedback regimens, as expected, E2 effectively suppressed LH levels in ovariectomized (OVX) wild-type (WT) mice to the levels seen in ovary-intact mice. Surprisingly, however, despite the fact that E2 regulation of Kiss1 mRNA expression was abrogated in both the ARC and AVPV of KERαKO mice, E2 also effectively decreased LH levels in OVX KERαKO mice to the levels seen in ovary-intact mice. Conversely, using a positive feedback regimen, E2 stimulated LH surges in WT mice, but had no effect in KERαKO mice. These experiments clearly demonstrate that ERα in kisspeptin neurons is required for the positive, but not negative feedback actions of E2 on GnRH/LH secretion in adult female mice. It remains to be determined whether the failure of KERαKO mice to exhibit GnRH/LH surges reflects the role of ERα in the development of kisspeptin neurons, in the active signaling processes leading to the release of GnRH/LH surges, or both.


2016 ◽  
Vol 310 (11) ◽  
pp. E912-E918 ◽  
Author(s):  
Anna E. Börjesson ◽  
Helen H. Farman ◽  
Sofia Movérare-Skrtic ◽  
Cecilia Engdahl ◽  
Maria Cristina Antal ◽  
...  

The bone-sparing effect of estrogens is mediated primarily via estrogen receptor (ER)α, which stimulates gene transcription through activation function (AF)-1 and AF-2. The role of ERαAF-1 for the estradiol (E2) effects is tissue specific. The selective ER modulators (SERMs) raloxifene (Ral), lasofoxifene (Las), and bazedoxifene (Bza) can be used to treat postmenopausal osteoporosis. They all reduce the risk for vertebral fractures, whereas Las and partly Bza, but not Ral, reduce the risk for nonvertebral fractures. Here, we have compared the tissue specificity of Ral, Las, and Bza and evaluated the role of ERαAF-1 for the effects of these SERMs, with an emphasis on bone parameters. We treated ovariectomized (OVX) wild-type (WT) mice and OVX mice lacking ERαAF-1 (ERαAF-10) with E2, Ral, Las, or Bza. All three SERMs increased trabecular bone mass in the axial skeleton. In the appendicular skeleton, only Las increased the trabecular bone volume/tissue volume and trabecular number, whereas both Ral and Las increased the cortical bone thickness and strength. However, Ral also increased cortical porosity. The three SERMs had only a minor effect on uterine weight. Notably, all evaluated effects of these SERMs were absent in ovx ERαAF-10 mice. In conclusion, all SERMs had similar effects on axial bone mass. However, the SERMs had slightly different effects on the appendicular skeleton since only Las increased the trabecular bone mass and only Ral increased the cortical porosity. Importantly, all SERM effects require a functional ERαAF-1 in female mice. These results could lead to development of more specific treatments for osteoporosis.


2016 ◽  
Vol 24 (1) ◽  
pp. 133-141 ◽  
Author(s):  
Mana Hirano ◽  
Osamu Wada-Hiraike ◽  
Houju Fu ◽  
Nana Akino ◽  
Wataru Isono ◽  
...  

Reproduction ◽  
2012 ◽  
Vol 143 (4) ◽  
pp. 549-558 ◽  
Author(s):  
José E Sánchez-Criado ◽  
Kourtney Trudgen ◽  
Yolanda Millán ◽  
Alfonso Blanco ◽  
José Monterde ◽  
...  

Estrogen receptor 1 and 2 (ESR1 and 2) mediate estrogen (E) action on gonadotrope function. While much is known about the effects of ESR1 on the gonadotrope, there is still some controversy regarding the effects of ESR2. To investigate the role of ESR2 in the gonadotrope, 45-day-old female mice of two different genotypes were used: wild type (WT) and pituitary (gonadotropes and thyrotropes)-specific Esr1 knockout (KO). All mice were ovariectomized (OVX) and 15 days later injected over 3 days with 2.5 μg 17β-estradiol (E2), 0.2 mg of the selective ESR1 or 2 agonists, propylpyrazole triol and diarylpropionitrile, respectively, or 0.1 ml oil. The day after treatment, anterior pituitary glands were dissected out for evaluation of gonadotrope ultrastructural morphology and pituitary immunohistochemical expression of progesterone receptor (Pgr (Pr)). Blood was collected and serum LH levels were assessed. Activation of ESR1 in WT mice resulted in the following: i) uterine ballooning and vaginal cornification, ii) negative feedback on LH secretion, iii) increased number of homogeneous (functional) gonadotropes, and iv) pituitary Pgr expression (35.9±2.0% of pituitary cells). Activation of ESR1 in KO mice induced normal uterine, vaginal, and LH secretion responses, but failed to increase the number of functional gonadotropes, and induced significantly lower Pgr expression (21.0±3.0% of pituitary cells) than in WT mice. Whilst activation of ESR2 had no significant effects in WT mice, it doubled the number of functional gonadotropes exhibited by KO mice injected with oil. It is concluded that E2 exerted its action in KO mouse gonadotropes via ESR2.


2010 ◽  
Vol 25 (12) ◽  
pp. 2690-2700 ◽  
Author(s):  
Anna E Börjesson ◽  
Marie K Lagerquist ◽  
Chen Liu ◽  
Ruijin Shao ◽  
Sara H Windahl ◽  
...  

2013 ◽  
Vol 70 (21) ◽  
pp. 4023-4037 ◽  
Author(s):  
A. E. Börjesson ◽  
M. K. Lagerquist ◽  
S. H. Windahl ◽  
C. Ohlsson

Sign in / Sign up

Export Citation Format

Share Document