scholarly journals Positive, But Not Negative Feedback Actions of Estradiol in Adult Female Mice Require Estrogen Receptor α in Kisspeptin Neurons

Endocrinology ◽  
2015 ◽  
Vol 156 (3) ◽  
pp. 1111-1120 ◽  
Author(s):  
Sharon L. Dubois ◽  
Maricedes Acosta-Martínez ◽  
Mary R. DeJoseph ◽  
Andrew Wolfe ◽  
Sally Radovick ◽  
...  

Abstract Hypothalamic kisspeptin (Kiss1) neurons express estrogen receptor α (ERα) and exert control over GnRH/LH secretion in female rodents. It has been proposed that estradiol (E2) activation of ERα in kisspeptin neurons in the arcuate nucleus (ARC) suppresses GnRH/LH secretion (negative feedback), whereas E2 activation of ERα in kisspeptin neurons in the anteroventral periventricular nucleus (AVPV) mediates the release of preovulatory GnRH/LH surges (positive feedback). To test these hypotheses, we generated mice bearing kisspeptin cell–specific deletion of ERα (KERαKO) and treated them with E2 regimens that evoke either negative or positive feedback actions on GnRH/LH secretion. Using negative feedback regimens, as expected, E2 effectively suppressed LH levels in ovariectomized (OVX) wild-type (WT) mice to the levels seen in ovary-intact mice. Surprisingly, however, despite the fact that E2 regulation of Kiss1 mRNA expression was abrogated in both the ARC and AVPV of KERαKO mice, E2 also effectively decreased LH levels in OVX KERαKO mice to the levels seen in ovary-intact mice. Conversely, using a positive feedback regimen, E2 stimulated LH surges in WT mice, but had no effect in KERαKO mice. These experiments clearly demonstrate that ERα in kisspeptin neurons is required for the positive, but not negative feedback actions of E2 on GnRH/LH secretion in adult female mice. It remains to be determined whether the failure of KERαKO mice to exhibit GnRH/LH surges reflects the role of ERα in the development of kisspeptin neurons, in the active signaling processes leading to the release of GnRH/LH surges, or both.

Endocrinology ◽  
2014 ◽  
Vol 155 (4) ◽  
pp. 1418-1427 ◽  
Author(s):  
Rachel Y. Cheong ◽  
Robert Porteous ◽  
Pierre Chambon ◽  
István Ábrahám ◽  
Allan E. Herbison

The negative feedback mechanism through which 17β-estradiol (E2) acts to suppress the activity of the GnRH neurons remains unclear. Using inducible and cell-specific genetic mouse models, we examined the estrogen receptor (ER) isoforms expressed by neurons that mediate acute estrogen negative feedback. Adult female mutant mice in which ERα was deleted from all neurons in the neonatal period failed to exhibit estrous cycles or negative feedback. Adult mutant female mice with neonatal neuronal ERβ deletion exhibited normal estrous cycles, but a failure of E2 to suppress LH secretion was seen in ovariectomized mice. Mutant mice with a GnRH neuron–selective deletion of ERβ exhibited normal cycles and negative feedback, suggesting no critical role for ERβ in GnRH neurons in acute negative feedback. To examine the adult roles of neurons expressing ERα, an inducible tamoxifen-based Cre-LoxP approach was used to ablate ERα from neurons that express calmodulin kinase IIα in adults. This resulted in mice with no estrous cycles, a normal increase in LH after ovariectomy, but an inability of E2 to suppress LH secretion. Finally, acute administration of ERα- and ERβ-selective agonists to adult ovariectomized wild-type mice revealed that activation of ERα suppressed LH secretion, whereas ERβ agonists had no effect. This study highlights the differences in adult reproductive phenotypes that result from neonatal vs adult ablation of ERα in the brain. Together, these experiments expand previous global knockout studies by demonstrating that neurons expressing ERα are essential and probably sufficient for the acute estrogen negative feedback mechanism in female mice.


2017 ◽  
Vol 38 (5) ◽  
pp. 1061-1072 ◽  
Author(s):  
Luhong Wang ◽  
Laura L. Burger ◽  
Megan L. Greenwald-Yarnell ◽  
Martin G. Myers ◽  
Suzanne M. Moenter

Endocrinology ◽  
2013 ◽  
Vol 154 (11) ◽  
pp. 4249-4258 ◽  
Author(s):  
Casey C Nestor ◽  
Lique M. Coolen ◽  
Gail L. Nesselrod ◽  
Miro Valent ◽  
John M. Connors ◽  
...  

Orphanin FQ (OFQ), a member of the opioid family, is found in many areas of the hypothalamus and, when given centrally OFQ inhibits episodic LH secretion in rodents and sheep. Because GnRH neurons are devoid of the appropriate receptors to mediate steroid negative feedback directly, neurons that release OFQ may be involved. Using immunocytochemistry, we first determined that most OFQ neurons in the arcuate nucleus (ARC) and other hypothalamic regions of luteal phase ewes contained both estrogen receptor α and progesterone (P) receptor. Given a similar high degree of steroid receptor colocalization in other ARC subpopulations, we examined whether OFQ neurons of the ARC contained those other neuropeptides and neurotransmitters. OFQ did not colocalize with kisspeptin, tyrosine hydroxylase, or agouti-related peptide, but all ARC OFQ neurons coexpressed proopiomelanocortin. To test for a role for endogenous OFQ, we examined the effects of an OFQ receptor antagonist, [Nphe1,Arg14,Lys15]Nociceptin-NH2 (UFP-101) (30 nmol intracerebroventricular/h), on LH secretion in steroid-treated ewes in the breeding season and ovary-intact ewes in anestrus. Ovariectomized ewes with luteal phase concentrations of P and estradiol showed a significant increase in LH pulse frequency during infusion of UFP-101 (4.5 ± 0.5 pulses/6 h) compared with saline infusion (2.6 ± 0.4 pulses/6 h), whereas ewes implanted with only estradiol did not. Ovary-intact anestrous ewes displayed no significant differences in LH pulse amplitude or frequency during infusion of UFP-101. Therefore, we conclude that OFQ mediates, at least in part, the negative feedback action of P on GnRH/LH pulse frequency in sheep.


2006 ◽  
Vol 191 (1) ◽  
pp. 309-317 ◽  
Author(s):  
Jonathan Lindzey ◽  
Friederike L Jayes ◽  
Mariana M Yates ◽  
John F Couse ◽  
Kenneth S Korach

Depending on the estrous/menstrual cycle stage in females, ovarian-derived estradiol (E2) exerts either a negative or a positive effect on the hypothalamic–pituitary axis to regulate the synthesis and secretion of pituitary gonadotropins, LH, and FSH. To study the role of estrogen receptor-α (ERα) mediating these effects, we assessed the relevant parameters in adult wild-type (WT) and ERα-null (αERKO) female mice in vivo and in primary pituitary cell cultures. The αERKO mice exhibited significantly higher plasma and pituitary LH levels relative to WT females despite possessing markedly high levels of circulating E2. In contrast, hypothalamic GnRH content and circulating FSH levels were comparable between genotypes. Ovariectomy led to increased plasma LH in WT females but no further increase in αERKO females, while plasma FSH levels increased in both genotypes. E2 treatment suppressed the high plasma LH and pituitary Lhb mRNA expression in ovariectomized WT females but had no effect in αERKO. In contrast, E2 treatments only partially suppressed plasma FSH in ovariectomized WT females, but this too was lacking in αERKO females. Therefore, negative feedback on FSH is partially E2/ERα mediated but more dependent on ovarian-derived inhibin, which was increased threefold above normal in αERKO females. Together, these data indicate that E2-mediated negative feedback is dependent on functional ERα and acts to primarily regulate LH synthesis and secretion. Studies in primary cultures of pituitary cells from WT females revealed that E2 did not suppress basal or GnRH-induced LH secretion but instead enhanced the latter response, indicating that the positive influence of E2 on gonadotropin secretion may occur at the level of the pituitary. Once again this effect was lacking in αERKO gonadotropes in culture. These data indicate that the aspects of negative and positive effects of E2 on gonadotropin secretion are ERα dependent and occur at the level of the hypothalamus and pituitary respectively.


2006 ◽  
Vol 190 (3) ◽  
pp. 593-600 ◽  
Author(s):  
Beverly A S Reyes ◽  
Hiroko Tsukamura ◽  
Helen I’Anson ◽  
Maria Amelita C Estacio ◽  
Kanjun Hirunagi ◽  
...  

Fasting-induced LH suppression is augmented by estrogen in female rats. We investigated the temporal changes in the number of estrogen receptor α (ERα)-immunoreactive (ir) cells in various brain regions in ovariectomized rats fasted for 6, 24, 30, and 48 h, commencing at 1300 h. We also determined the anatomical relationship of ERα immunoreactivity and dopamine-β-hydroxylase (DBH) neurons in the A2 region of the nucleus of the solitary tract (NTS) and the paraventricular nucleus (PVN). The number of ERα-ir cells significantly increased after 30 h from the onset of fasting in the PVN and NTS compared with the unfasted controls and was sustained until 48 h. In the A2 region of 48-h fasted rats, 46.75% DBH-ir cells expressed ERα, and this was significantly higher than in unfasted controls (8.16% DBH-ir cells expressed ERα). In the PVN, most ERα-ir neurons were juxtaposed with DBH-ir varicosities. These results suggest that ERα is expressed in specific brain regions at a defined time from the onset of fasting. In addition, the anatomical relationship of noradrenergic and ERα-ir neurons in the A2 region and PVN may suggest a role for estrogen in increasing the activity of noradrenergic neurons in the A2 region and enhancing sensitivity of the PVN to noradrenergic input arising from the lower brainstem and thereby augmenting the suppression of LH secretion during fasting.


Endocrinology ◽  
2012 ◽  
Vol 153 (11) ◽  
pp. 5406-5414 ◽  
Author(s):  
Christina M. Merkley ◽  
Katrina L. Porter ◽  
Lique M. Coolen ◽  
Stanley M. Hileman ◽  
Heather J. Billings ◽  
...  

Abstract KNDy (kisspeptin/neurokinin B/dynorphin) neurons of the arcuate nucleus (ARC) appear to mediate the negative feedback actions of estradiol and are thought to be key regulators of pulsatile LH secretion. In the ewe, KNDy neurons may also be involved with the positive feedback actions of estradiol (E2) to induce the LH surge, but the role of kisspeptin neurons in the preoptic area (POA) remains unclear. The goal of this study was to identify which population(s) of kisspeptin neurons is (are) activated during the LH surge and in response to the removal of E2-negative feedback, using Fos as an index of neuronal activation. Dual-label immunocytochemistry for kisspeptin and Fos was performed on sections containing the ARC and POA from ewes during the luteal phase of the estrous cycle, or before or after the onset of the LH surge (experiment 1), and from ovary-intact, short-term (24 h) and long-term (>30 d) ovariectomized (OVX) ewes in anestrus (experiment 2). The percentage of kisspeptin neurons expressing Fos in both the ARC and POA was significantly higher during the LH surge. In contrast, the percentage of kisspeptin/Fos colocalization was significantly increased in the ARC, but not POA, after both short- and long-term E2 withdrawal. Thus, POA kisspeptin neurons in the sheep are activated during, and appear to contribute to, E2-positive feedback, whereas ARC kisspeptin (KNDy) neurons are activated during both surge and pulsatile modes of secretion and likely play a role in mediating both positive and negative feedback actions of E2 on GnRH secretion in the ewe.


Endocrinology ◽  
2014 ◽  
Vol 155 (8) ◽  
pp. 2986-2995 ◽  
Author(s):  
Shel-Hwa Yeo ◽  
Allan E. Herbison

The location and characteristics of cells within the brain that suppress GnRH neuron activity to contribute to the estrogen-negative feedback mechanism are poorly understood. Using adeno-associated virus (AAV)-mediated Cre-LoxP recombination in estrogen receptor-α (ERα) floxed mice (ERαflox/flox), we aimed to examine the role of ERα-expressing neurons located in the arcuate nucleus (ARN) in the estrogen-negative feedback mechanism. Bilateral injection of AAV-Cre into the ARN of ERαflox/flox mice (n = 14) resulted in the time-dependent ablation of up to 99% of ERα-immunoreactive cell numbers throughout the rostrocaudal length of the ARN. These mice were all acyclic by 5 weeks after AAV-Cre injections with most mice in constant estrous. Control wild-type mice injected with AAV-Cre (n = 13) were normal. Body weight was not altered in ERαflox/flox mice. After ovariectomy, a significant increment in LH secretion was observed in all genotypes, although its magnitude was reduced in ERαflox/flox mice. Acute and chronic estrogen-negative feedback were assessed by administering 17β-estradiol to mice as a bolus (LH measured 3 h later) or SILASTIC brand capsule implant (LH measured 5 d later). This demonstrated that chronic estrogen feedback was absent in ERαflox/flox mice, whereas the acute feedback was normal. These results reveal a critical role for ERα-expressing cells within the ARN in both estrous cyclicity and the chronic estrogen negative feedback mechanism in female mice. This suggests that ARN cells provide a key indirect, transsynpatic route through which estradiol suppresses the activity of GnRH neurons.


Reproduction ◽  
2012 ◽  
Vol 143 (4) ◽  
pp. 549-558 ◽  
Author(s):  
José E Sánchez-Criado ◽  
Kourtney Trudgen ◽  
Yolanda Millán ◽  
Alfonso Blanco ◽  
José Monterde ◽  
...  

Estrogen receptor 1 and 2 (ESR1 and 2) mediate estrogen (E) action on gonadotrope function. While much is known about the effects of ESR1 on the gonadotrope, there is still some controversy regarding the effects of ESR2. To investigate the role of ESR2 in the gonadotrope, 45-day-old female mice of two different genotypes were used: wild type (WT) and pituitary (gonadotropes and thyrotropes)-specific Esr1 knockout (KO). All mice were ovariectomized (OVX) and 15 days later injected over 3 days with 2.5 μg 17β-estradiol (E2), 0.2 mg of the selective ESR1 or 2 agonists, propylpyrazole triol and diarylpropionitrile, respectively, or 0.1 ml oil. The day after treatment, anterior pituitary glands were dissected out for evaluation of gonadotrope ultrastructural morphology and pituitary immunohistochemical expression of progesterone receptor (Pgr (Pr)). Blood was collected and serum LH levels were assessed. Activation of ESR1 in WT mice resulted in the following: i) uterine ballooning and vaginal cornification, ii) negative feedback on LH secretion, iii) increased number of homogeneous (functional) gonadotropes, and iv) pituitary Pgr expression (35.9±2.0% of pituitary cells). Activation of ESR1 in KO mice induced normal uterine, vaginal, and LH secretion responses, but failed to increase the number of functional gonadotropes, and induced significantly lower Pgr expression (21.0±3.0% of pituitary cells) than in WT mice. Whilst activation of ESR2 had no significant effects in WT mice, it doubled the number of functional gonadotropes exhibited by KO mice injected with oil. It is concluded that E2 exerted its action in KO mouse gonadotropes via ESR2.


2021 ◽  
Vol 22 (17) ◽  
pp. 9229
Author(s):  
Yoshihisa Uenoyama ◽  
Naoko Inoue ◽  
Sho Nakamura ◽  
Hiroko Tsukamura

Estrogen produced by ovarian follicles plays a key role in the central mechanisms controlling reproduction via regulation of gonadotropin-releasing hormone (GnRH) release by its negative and positive feedback actions in female mammals. It has been well accepted that estrogen receptor α (ERα) mediates both estrogen feedback actions, but precise targets had remained as a mystery for decades. Ever since the discovery of kisspeptin neurons as afferent ERα-expressing neurons to govern GnRH neurons, the mechanisms mediating estrogen feedback are gradually being unraveled. The present article overviews the role of kisspeptin neurons in the arcuate nucleus (ARC), which are considered to drive pulsatile GnRH/gonadotropin release and folliculogenesis, in mediating the estrogen negative feedback action, and the role of kisspeptin neurons located in the anteroventral periventricular nucleus-periventricular nucleus (AVPV-PeN), which are thought to drive GnRH/luteinizing hormone (LH) surge and consequent ovulation, in mediating the estrogen positive feedback action. This implication has been confirmed by the studies showing that estrogen-bound ERα down- and up-regulates kisspeptin gene (Kiss1) expression in the ARC and AVPV-PeN kisspeptin neurons, respectively. The article also provides the molecular and epigenetic mechanisms regulating Kiss1 expression in kisspeptin neurons by estrogen. Further, afferent ERα-expressing neurons that may regulate kisspeptin release are discussed.


Sign in / Sign up

Export Citation Format

Share Document