scholarly journals A coarse-Grained Solvent-Free Model for Tethered Lipid Membrane Simulation

2011 ◽  
Vol 100 (3) ◽  
pp. 491a
Author(s):  
Mingyang Hu ◽  
Markus Deserno
2011 ◽  
Vol 100 (3) ◽  
pp. 640a
Author(s):  
Tristan Bereau ◽  
Zun-Jing Wang ◽  
Markus Deserno

2020 ◽  
Vol 88 (4) ◽  
Author(s):  
Teng Ma ◽  
Yuanpeng Liu ◽  
Guochang Lin ◽  
Changguo Wang ◽  
Huifeng Tan

Abstract A fundamental understanding of the interactions between one-dimensional nanomaterials and the cell membrane is of great importance for assessing the hazardous effects of viruses and improving the performance of drug delivery. Here, we propose a finite element-based coarse-grained model to describe the cell entry of nanomaterials based on an absolute nodal coordinate formula and Brownian dynamics. The interactions between nanoparticles and lipid membrane are described by the Lennard–Jones potential, and a contact detection algorithm is used to determine the contact region. Compared with the theoretical and published experimental results, the correctness of the model has been verified. We take two examples to test the robustness of the model: the endocytosis of nanorods grafted with polymer chains and simultaneous entry of multiple nanorods into a lipid membrane. It shows that the model can not only capture the effect of ligand–receptor binding on the penetration but also accurately characterize the cooperative or separate entry of multiple nanorods. This coarse-grained model is computationally highly efficient and will be powerful in combination with molecular dynamics simulations to provide an understanding of cell–nanomaterial interactions.


2020 ◽  
Vol 117 (21) ◽  
pp. 11421-11431 ◽  
Author(s):  
Benjamin S. Schuster ◽  
Gregory L. Dignon ◽  
Wai Shing Tang ◽  
Fleurie M. Kelley ◽  
Aishwarya Kanchi Ranganath ◽  
...  

Phase separation of intrinsically disordered proteins (IDPs) commonly underlies the formation of membraneless organelles, which compartmentalize molecules intracellularly in the absence of a lipid membrane. Identifying the protein sequence features responsible for IDP phase separation is critical for understanding physiological roles and pathological consequences of biomolecular condensation, as well as for harnessing phase separation for applications in bioinspired materials design. To expand our knowledge of sequence determinants of IDP phase separation, we characterized variants of the intrinsically disordered RGG domain from LAF-1, a model protein involved in phase separation and a key component of P granules. Based on a predictive coarse-grained IDP model, we identified a region of the RGG domain that has high contact probability and is highly conserved between species; deletion of this region significantly disrupts phase separation in vitro and in vivo. We determined the effects of charge patterning on phase behavior through sequence shuffling. We designed sequences with significantly increased phase separation propensity by shuffling the wild-type sequence, which contains well-mixed charged residues, to increase charge segregation. This result indicates the natural sequence is under negative selection to moderate this mode of interaction. We measured the contributions of tyrosine and arginine residues to phase separation experimentally through mutagenesis studies and computationally through direct interrogation of different modes of interaction using all-atom simulations. Finally, we show that despite these sequence perturbations, the RGG-derived condensates remain liquid-like. Together, these studies advance our fundamental understanding of key biophysical principles and sequence features important to phase separation.


2008 ◽  
Author(s):  
Masaomi Hatakeyama ◽  
Roland Faller ◽  
Michio Tokuyama ◽  
Irwin Oppenheim ◽  
Hideya Nishiyama

2021 ◽  
Author(s):  
Katy J Sutcliffe ◽  
Robin A Corey ◽  
Steven J Charlton ◽  
Richard B Sessions ◽  
Graeme Henderson ◽  
...  

AbstractOverdose deaths from synthetic opioids, such as fentanyl, have reached epidemic proportions in the USA and are increasing worldwide. Fentanyl is a potent opioid agonist, that is less well reversed by naloxone than morphine. Due to fentanyl’s high lipophilicity and elongated structure we hypothesised that its unusual pharmacology may be explained by a novel binding mode to the μ-opioid receptor (MOPr).By employing coarse-grained molecular dynamics simulations and free energy calculations, we determined the routes by which fentanyl and morphine access the orthosteric pocket of MOPr.Morphine accesses MOPr via the aqueous pathway; first binding to an extracellular vestibule, then diffusing into the orthosteric pocket. In contrast, fentanyl takes a novel route; first partitioning into the membrane, before accessing the orthosteric site by diffusing through a ligand-induced gap between the transmembrane helices.This novel lipophilic route may explain the high potency and lower susceptibility of fentanyl to reversal by naloxone.


2020 ◽  
Vol 117 (52) ◽  
pp. 33090-33098
Author(s):  
Johannes Krausser ◽  
Tuomas P. J. Knowles ◽  
Anđela Šarić

Biological membranes can dramatically accelerate the aggregation of normally soluble protein molecules into amyloid fibrils and alter the fibril morphologies, yet the molecular mechanisms through which this accelerated nucleation takes place are not yet understood. Here, we develop a coarse-grained model to systematically explore the effect that the structural properties of the lipid membrane and the nature of protein–membrane interactions have on the nucleation rates of amyloid fibrils. We identify two physically distinct nucleation pathways—protein-rich and lipid-rich—and quantify how the membrane fluidity and protein–membrane affinity control the relative importance of those molecular pathways. We find that the membrane’s susceptibility to reshaping and being incorporated into the fibrillar aggregates is a key determinant of its ability to promote protein aggregation. We then characterize the rates and the free-energy profile associated with this heterogeneous nucleation process, in which the surface itself participates in the aggregate structure. Finally, we compare quantitatively our data to experiments on membrane-catalyzed amyloid aggregation of α-synuclein, a protein implicated in Parkinson’s disease that predominately nucleates on membranes. More generally, our results provide a framework for understanding macromolecular aggregation on lipid membranes in a broad biological and biotechnological context.


Sign in / Sign up

Export Citation Format

Share Document