scholarly journals Roles of Amino Acid Residues in Woolly Mammoth Hemoglobin on the Temperature Effect of Oxygen Binding

2013 ◽  
Vol 104 (2) ◽  
pp. 559a
Author(s):  
Yue Yuan ◽  
Catherine Byrd ◽  
Tong-Jian Shen ◽  
Nancy T. Ho ◽  
Virgil Simplaceanu ◽  
...  
Author(s):  
C. Ho ◽  
H.-W. Kim

Human normal adult hemoglobin (Hb) A, the oxygen carrier of blood, is a tetrameric protein consisting of two α chains of 141 amino acid residues each and two β chains of 146 amino acid residues each. Each Hb chain contains a heme group which is an iron complex of protoporphyrin IX. Under physiological conditions, the heme-iron atoms of Hb remain in the ferrous state. In the absence of oxygen, the four heme-irom atoms in Hb A are in the highspin ferrous state [Fe(II)] with four unpaired electrons each. Each of the four heme-iron atoms in Hb A can combine with an O2 molecule to give oxyhemoglobin (HbO2) in which the iron atom is in a low-spin, diamagnetic ferrous state. The oxygen binding of Hb exhibits sigmoidal behavior, with an overall association constant expression giving a greater than first-power dependence on the concentration of O2. Thus, the oxygenation of Hb is a cooperative process, such that when one O2 is bound, succeeding O2 molecules are bound more readily. Hb is an allosteric protein, i.e., its functional properties are regulated by a number of metabolites [such as hydrogen ions, chloride, carbon dioxide, 2,3-diphosphoglycerate (2,3-DPG)] other than its ligand, O2. It has been used as a model for allosteric proteins, and indeed, hemoglobins of vertebrates are among the most extensively studied allosteric proteins. Their allosteric properties are physiologically important in optimizing O2 transport by erythrocytes. The large number of mutant forms of Hb available provides an array of structural alterations with which to correlate effects on function. For details, see DickersonandGeis (1983), Bunnand Forget (1986), Ho (1992), Ho and Perussi (1994). There are two types of contacts between the α and β subunits of Hb (Perutz, 1970; Dickerson and Geis, 1983). The α1β1 (or α2 β2) contacts, involving B, G, and H helices, and GH corners, are called packing contacts. These contacts remain unchanged and hold the dimer together even when there is a change in the ligation state of the heme.


1987 ◽  
Vol 57 (01) ◽  
pp. 017-019 ◽  
Author(s):  
Magda M W Ulrich ◽  
Berry A M Soute ◽  
L Johan M van Haarlem ◽  
Cees Vermeer

SummaryDecarboxylated osteocalcins were prepared and purified from bovine, chicken, human and monkey bones and assayed for their ability to serve as a substrate for vitamin K-dependent carboxylase from bovine liver. Substantial differences were observed, especially between bovine and monkey d-osteocalcin. Since these substrates differ only in their amino acid residues 3 and 4, it seems that these residues play a role in the recognition of a substrate by hepatic carboxylase.


2018 ◽  
Author(s):  
Allan J. R. Ferrari ◽  
Fabio C. Gozzo ◽  
Leandro Martinez

<div><p>Chemical cross-linking/Mass Spectrometry (XLMS) is an experimental method to obtain distance constraints between amino acid residues, which can be applied to structural modeling of tertiary and quaternary biomolecular structures. These constraints provide, in principle, only upper limits to the distance between amino acid residues along the surface of the biomolecule. In practice, attempts to use of XLMS constraints for tertiary protein structure determination have not been widely successful. This indicates the need of specifically designed strategies for the representation of these constraints within modeling algorithms. Here, a force-field designed to represent XLMS-derived constraints is proposed. The potential energy functions are obtained by computing, in the database of known protein structures, the probability of satisfaction of a topological cross-linking distance as a function of the Euclidean distance between amino acid residues. The force-field can be easily incorporated into current modeling methods and software. In this work, the force-field was implemented within the Rosetta ab initio relax protocol. We show a significant improvement in the quality of the models obtained relative to current strategies for constraint representation. This force-field contributes to the long-desired goal of obtaining the tertiary structures of proteins using XLMS data. Force-field parameters and usage instructions are freely available at http://m3g.iqm.unicamp.br/topolink/xlff <br></p></div><p></p><p></p>


Sign in / Sign up

Export Citation Format

Share Document