Faculty Opinions recommendation of Amino acid residues involved in ligand preference of the Snf3 transporter-like sensor in Saccharomyces cerevisiae.

Author(s):  
Carlos Gancedo
1993 ◽  
Vol 13 (4) ◽  
pp. 2554-2563 ◽  
Author(s):  
D Wojciechowicz ◽  
C F Lu ◽  
J Kurjan ◽  
P N Lipke

alpha-Agglutinin is a cell adhesion glycoprotein expressed on the cell wall of Saccharomyces cerevisiae alpha cells. Binding of alpha-agglutinin to its ligand a-agglutinin, expressed by a cells, mediates cell-cell contact during mating. Analysis of truncations of the 650-amino-acid alpha-agglutinin structural gene AG alpha 1 delineated functional domains of alpha-agglutinin. Removal of the C-terminal hydrophobic sequence allowed efficient secretion of the protein and loss of cell surface attachment. This cell surface anchorage domain was necessary for linkage to a glycosyl phosphatidylinositol anchor. A construct expressing the N-terminal 350 amino acid residues retained full a-agglutinin-binding activity, localizing the binding domain to the N-terminal portion of alpha-agglutinin. A 278-residue N-terminal peptide was inactive; therefore, the binding domain includes residues between 278 and 350. The segment of alpha-agglutinin between amino acid residues 217 and 308 showed significant structural and sequence similarity to a consensus sequence for immunoglobulin superfamily variable-type domains. The similarity of the alpha-agglutinin-binding domain to mammalian cell adhesion proteins suggests that this structure is a highly conserved feature of adhesion proteins in diverse eukaryotes.


2005 ◽  
Vol 4 (6) ◽  
pp. 1057-1065 ◽  
Author(s):  
M. Wilhelm ◽  
F.-X. Wilhelm

ABSTRACT Reverse transcriptase (RT) with its associated RNase H (RH) domain and integrase (IN) are key enzymes encoded by retroviruses and retrotransposons. Several studies have implied a functional role of the interaction between IN and RT during the replication of retroviral and retrotransposon genomes. In this study, IN deletion mutants were used to investigate the role of IN on the RT activity of the yeast Saccharomyces cerevisiae retrotransposon Ty1. We have identified two domains of Ty1 integrase which have effects on RT activity in vivo. The deletion of a domain spanning amino acid residues 233 to 520 of IN increases the exogenous specific activity of RT up to 20-fold, whereas the removal of a region rich in acidic amino acid residues between residues 521 and 607 decreases its activity. The last result complements our observation that an active recombinant RT protein can be obtained if a small acidic tail mimicking the acidic domain of IN is fused to the RT-RH domain. We suggest that interaction between these acidic amino acid residues of IN and a basic region of RT could be critical for the correct folding of RT and for the formation of an active conformation of the enzyme.


1990 ◽  
Vol 268 (2) ◽  
pp. 401-407 ◽  
Author(s):  
A Carabaza ◽  
J Arino ◽  
J W Fox ◽  
C Villar-Palasi ◽  
J J Guinovart

Glycogen synthase from Saccharomyces cerevisiae was purified to homogeneity. The enzyme showed a subunit molecular mass of 80 kDa. The holoenzyme appears to be a tetramer. Antibodies developed against purified yeast glycogen synthase inactivated the enzyme in yeast extracts and allowed the detection of the protein in Western blots. Amino acid analysis showed that the enzyme is very rich in glutamate and/or glutamine residues. The N-terminal sequence (11 amino acid residues) was determined. In addition, selected tryptic-digest peptides were purified by reverse-phase h.p.l.c. and submitted to gas-phase sequencing. Up to eight sequences (79 amino acid residues) could be aligned with the human muscle enzyme sequence. Levels of identity range between 37 and 100%, indicating that, although human and yeast glycogen synthases probably share some conserved regions, significant differences in their primary structure should be expected.


1993 ◽  
Vol 13 (3) ◽  
pp. 1876-1882
Author(s):  
S C Cheng ◽  
W Y Tarn ◽  
T Y Tsao ◽  
J Abelson

We have isolated the gene of a splicing factor, PRP19, by complementation of the temperature-sensitive growth defect of the prp19 mutant of Saccharomyces cerevisiae. The gene encodes a protein of 502 amino acid residues of molecular weight 56,500, with no homology to sequences in the data base. Unlike other PRP proteins or mammalian splicing factors, the sequence of PRP19 has no discernible motif. Immunoprecipitation studies showed that PRP19 is associated with the spliceosome during the splicing reaction. Although the exact function of PRP19 remains unknown, PRP19 appears to be distinct from the other PRP proteins or other spliceosomal components.


1993 ◽  
Vol 13 (3) ◽  
pp. 1876-1882 ◽  
Author(s):  
S C Cheng ◽  
W Y Tarn ◽  
T Y Tsao ◽  
J Abelson

We have isolated the gene of a splicing factor, PRP19, by complementation of the temperature-sensitive growth defect of the prp19 mutant of Saccharomyces cerevisiae. The gene encodes a protein of 502 amino acid residues of molecular weight 56,500, with no homology to sequences in the data base. Unlike other PRP proteins or mammalian splicing factors, the sequence of PRP19 has no discernible motif. Immunoprecipitation studies showed that PRP19 is associated with the spliceosome during the splicing reaction. Although the exact function of PRP19 remains unknown, PRP19 appears to be distinct from the other PRP proteins or other spliceosomal components.


1989 ◽  
Vol 9 (7) ◽  
pp. 3009-3017 ◽  
Author(s):  
Y Nogi ◽  
T Fukasawa

To study the functional domains of a transcriptional repressor encoded by the GAL80 gene of Saccharomyces cerevisiae, we constructed various deletion and insertion mutations in the GAL80 coding region and determined the ability of these mutations to repress synthesis of galactose-metabolizing enzymes as well as the capacity of the mutant proteins to respond to the inducer. Two regions, from amino acids 1 to 321 and from amino acids 341 to 423, in the total sequence of 435 amino acids were required for repression. The internal region from amino acids 321 to 340 played a role in the response to the inducer. The 12 amino acids at the carboxy terminus were dispensable for normal functioning of the GAL80 protein. Using indirect immunofluorescence and subcellular fractionation techniques, we also found that two distinct regions (amino acids 1 to 109 and 342 to 405) within the putative repression domain were capable of directing cytoplasmically synthesized Escherichia coli beta-galactosidase to the yeast nucleus. In addition, three gal80 mutations were mapped at amino acid residues 183, 298, and 310 in the domain required for repression. On the basis of these results, we suggest that the GAL80 protein consists of a repression domain located in two separate regions (amino acid residues 1 to 321 and 341 to 423) that are interrupted by an inducer interaction domain (residues 322 to 340) and two nuclear localization domains (1 to 109 and 342 to 405) that overlap the repression domains.


2019 ◽  
Vol 2 (4) ◽  
pp. e201800280 ◽  
Author(s):  
Katrin Riemschoss ◽  
Verena Arndt ◽  
Benedetta Bolognesi ◽  
Philipp von Eisenhart-Rothe ◽  
Shu Liu ◽  
...  

Prions of lower eukaryotes are self-templating protein aggregates that replicate by converting homotypic proteins into stable, tightly packed beta-sheet–rich protein assemblies. Propagation is mediated by prion domains, low-complexity regions enriched in polar and devoid of charged amino acid residues. In mammals, compositionally similar domains modulate the assembly of dynamic stress granules (SGs) that associate via multivalent weak interactions. Dysregulation of SGs composed of proteins with prion-like domains has been proposed to underlie the formation of pathological inclusions in several neurodegenerative diseases. The events that drive prion-like domains into transient or solid assemblies are not well understood. We studied the interactors of the prototype prion domain NM of Saccharomyces cerevisiae Sup35 in its soluble or fibril-induced prion conformation in the mammalian cytosol. We show that the interactomes of soluble and prionized NM overlap with that of SGs. Prion induction by exogenous seeds does not cause SG assembly, demonstrating that colocalization of aberrant protein inclusions with SG components does not necessarily reveal SGs as initial sites of protein misfolding.


Sign in / Sign up

Export Citation Format

Share Document