scholarly journals Targeting Protein:Protein Interaction Sites for Drug Development against Voltage-Gated Sodium Channels

2015 ◽  
Vol 108 (2) ◽  
pp. 574a
Author(s):  
Syed R. Ali ◽  
Zhiqing Liu ◽  
Miroslav N. Nenov ◽  
Neli I. Panova-Elektro ◽  
Jia Zhou ◽  
...  
2011 ◽  
Vol 286 (27) ◽  
pp. 24253-24263 ◽  
Author(s):  
Chaojian Wang ◽  
Chuan Wang ◽  
Ethan G. Hoch ◽  
Geoffrey S. Pitt

Fibroblast growth factor homologous factors (FHFs, FGF11–14) bind to the C termini (CTs) of specific voltage-gated sodium channels (VGSC) and thereby regulate their function. The effect of an individual FHF on a specific VGSC varies greatly depending upon the individual FHF isoform. How individual FHFs impart distinctive effects on specific VGSCs is not known and the specificity of these pairwise interactions is not understood. Using several biochemical approaches combined with functional analysis, we mapped the interaction site for FGF12B on the NaV1.5 C terminus and discovered previously unknown determinants necessary for FGF12 interaction. Also, we demonstrated that FGF12B binds to some, but not all NaV1 CTs, suggesting specificity of interaction. Exploiting a human single nucleotide polymorphism in the core domain of FGF12 (P149Q), we identified a surface proline that contributes a part of this pairwise specificity. This proline is conserved among all FHFs, and mutation of the homologous residue in FGF13 also leads to loss of interaction with a specific VGSC CT (NaV1.1) and loss of modulation of the resultant Na+ channel function. We hypothesized that some of the specificity mediated by this proline may result from differences in the affinity of the binding partners. Consistent with this hypothesis, surface plasmon resonance data showed that the P149Q mutation decreased the binding affinity between FHFs and VGSC CTs. Moreover, immunocytochemistry revealed that the mutation prevented proper subcellular targeting of FGF12 to the axon initial segment in neurons. Together, these results give new insights into details of the interactions between FHFs and NaV1.x CTs, and the consequent regulation of Na+ channels.


2018 ◽  
Vol 115 (14) ◽  
pp. E3135-E3144 ◽  
Author(s):  
Amanda Buyan ◽  
Delin Sun ◽  
Ben Corry

Voltage-gated sodium channels are essential for carrying electrical signals throughout the body, and mutations in these proteins are responsible for a variety of disorders, including epilepsy and pain syndromes. As such, they are the target of a number of drugs used for reducing pain or combatting arrhythmias and seizures. However, these drugs affect all sodium channel subtypes found in the body. Designing compounds to target select sodium channel subtypes will provide a new therapeutic pathway and would maximize treatment efficacy while minimizing side effects. Here, we examine the binding preferences of nine compounds known to be sodium channel pore blockers in molecular dynamics simulations. We use the approach of replica exchange solute tempering (REST) to gain a more complete understanding of the inhibitors’ behavior inside the pore of NavMs, a bacterial sodium channel, and NavPas, a eukaryotic sodium channel. Using these simulations, we are able to show that both charged and neutral compounds partition into the bilayer, but neutral forms more readily cross it. We show that there are two possible binding sites for the compounds: (i) a site on helix 6, which has been previously determined by many experimental and computational studies, and (ii) an additional site, occupied by protonated compounds in which the positively charged part of the drug is attracted into the selectivity filter. Distinguishing distinct binding poses for neutral and charged compounds is essential for understanding the nature of pore block and will aid the design of subtype-selective sodium channel inhibitors.


Author(s):  
Zhi-mei Li ◽  
Li-xia Chen ◽  
Hua Li

The article “Voltage-gated Sodium Channels and Blockers: An Overview and Where Will They Go?”, written by Zhi-mei LI, Li-xia CHEN, Hua LI, was originally published electronically on the publisher’s internet portal on December 2019 without open access. With the author(s)’ decision to opt for Open Choice, the copyright of the article is changed to © The Author(s) 2020 and the article is forthwith distributed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.The original article has been corrected.Corresponding authors: Li-xia CHEN, Hua LI


Sign in / Sign up

Export Citation Format

Share Document