scholarly journals Characterization of Small Molecule Modulators of the Cystic Fibrosis Transmembrane Conductance Regulator using Backscattering Interferometry

2015 ◽  
Vol 108 (2) ◽  
pp. 585a
Author(s):  
Ashley Lockwood ◽  
David Heidary ◽  
Christopher Richards ◽  
Michael Baksh ◽  
M.G. Finn
2009 ◽  
Vol 421 (3) ◽  
pp. 377-385 ◽  
Author(s):  
Andrew Young ◽  
Martina Gentzsch ◽  
Cynthia Y. Abban ◽  
Ying Jia ◽  
Patricio I. Meneses ◽  
...  

Dynasore, a small molecule inhibitor of dynamin, was used to probe the role of dynamin in the endocytosis of wild-type and mutant CFTR (cystic fibrosis transmembrane conductance regulator). Internalization of both wild-type and ‘temperature-corrected’ ΔF508 CFTR was markedly inhibited by a short exposure to dynasore, implicating dynamin as a key element in the endocytic internalization of both wild-type and mutant CFTR. The inhibitory effect of dynasore was readily reversible upon washout of dynasore from the growth media. Corr-4 ({2-(5-chloro-2-methoxy-phenylamino)-4′-methyl-[4,5′]-bithiazolyl-2′-yl}-phenyl-methanonone), a pharmacological corrector of ΔF508 CFTR biosynthesis, caused a marked increase in the cell surface expression of mutant CFTR. Co-incubation of ΔF508 CFTR expressing cells with Corr-4 and dynasore caused a significantly greater level of cell surface CFTR than that observed in the presence of Corr-4 alone. These results argue that inhibiting the endocytic internalization of mutant CFTR provides a novel therapeutic target for augmenting the benefits of small molecule correctors of mutant CFTR biosynthesis.


2016 ◽  
Vol 48 (2) ◽  
pp. 451-458 ◽  
Author(s):  
Johanna F. Dekkers ◽  
Ricardo A. Gogorza Gondra ◽  
Evelien Kruisselbrink ◽  
Annelotte M. Vonk ◽  
Hettie M. Janssens ◽  
...  

Small-molecule therapies that restore defects in cystic fibrosis transmembrane conductance regulator (CFTR) gating (potentiators) or trafficking (correctors) are being developed for cystic fibrosis (CF) in a mutation-specific fashion. Options for pharmacological correction of CFTR-p.Phe508del (F508del) are being extensively studied but correction of other trafficking mutants that may also benefit from corrector treatment remains largely unknown.We studied correction of the folding mutants CFTR-p.Phe508del, -p.Ala455Glu (A455E) and -p.Asn1303Lys (N1303K) by VX-809 and 18 other correctors (C1–C18) using a functional CFTR assay in human intestinal CF organoids.Function of both CFTR-p.Phe508del and -p.Ala455Glu was enhanced by a variety of correctors but no residual or corrector-induced activity was associated with CFTR-p.Asn1303Lys. Importantly, VX-809-induced correction was most dominant for CFTR-p.Phe508del, while correction of CFTR-p.Ala455Glu was highest by a subgroup of compounds called bithiazoles (C4, C13, C14 and C17) and C5.These data support the development of mutation-specific correctors for optimal treatment of different CFTR trafficking mutants, and identify C5 and bithiazoles as the most promising compounds for correction of CFTR-p.Ala455Glu.


Nature ◽  
1990 ◽  
Vol 347 (6291) ◽  
pp. 382-386 ◽  
Author(s):  
Richard J. Gregory ◽  
Seng H. Cheng ◽  
Devra P. Rich ◽  
John Marshall ◽  
Sucharita Paul ◽  
...  

2011 ◽  
Vol 435 (2) ◽  
pp. 451-462 ◽  
Author(s):  
Weiqiang Zhang ◽  
Himabindu Penmatsa ◽  
Aixia Ren ◽  
Chandanamali Punchihewa ◽  
Andrew Lemoff ◽  
...  

CFTR (cystic fibrosis transmembrane conductance regulator) has been shown to form multiple protein macromolecular complexes with its interacting partners at discrete subcellular microdomains to modulate trafficking, transport and signalling in cells. Targeting protein–protein interactions within these macromolecular complexes would affect the expression or function of the CFTR channel. We specifically targeted the PDZ domain-based LPA2 (type 2 lysophosphatidic acid receptor)–NHERF2 (Na+/H+ exchanger regulatory factor-2) interaction within the CFTR–NHERF2–LPA2-containing macromolecular complexes in airway epithelia and tested its regulatory role on CFTR channel function. We identified a cell-permeable small-molecule compound that preferentially inhibits the LPA2–NHERF2 interaction. We show that this compound can disrupt the LPA2–NHERF2 interaction in cells and thus compromises the integrity of macromolecular complexes. Functionally, it elevates cAMP levels in proximity to CFTR and upregulates its channel activity. The results of the present study demonstrate that CFTR Cl− channel function can be finely tuned by modulating PDZ domain-based protein–protein interactions within the CFTR-containing macromolecular complexes. The present study might help to identify novel therapeutic targets to treat diseases associated with dysfunctional CFTR Cl− channels.


Sign in / Sign up

Export Citation Format

Share Document