scholarly journals Water and a Proton Shift between a Tyrosine and a Glutamate are Two Keys to Gating in Kv1.2; A Hypothesis Based on Quantum Calculations: The Sensor is Dynamic, Based on Hydrogen Bond Rearrangements, Principally in Water Rotational Degrees of Freedom, Plus a Proton Pathway

2016 ◽  
Vol 110 (3) ◽  
pp. 102a
Author(s):  
Alisher M. Kariev ◽  
Michael E. Green
2019 ◽  
Author(s):  
Riccardo Spezia ◽  
Hichem Dammak

<div> <div> <div> <p>In the present work we have investigated the possibility of using the Quantum Thermal Bath (QTB) method in molecular simulations of unimolecular dissociation processes. Notably, QTB is aimed in introducing quantum nuclear effects with a com- putational time which is basically the same as in newtonian simulations. At this end we have considered the model fragmentation of CH4 for which an analytical function is present in the literature. Moreover, based on the same model a microcanonical algorithm which monitor zero-point energy of products, and eventually modifies tra- jectories, was recently proposed. We have thus compared classical and quantum rate constant with these different models. QTB seems to correctly reproduce some quantum features, in particular the difference between classical and quantum activation energies, making it a promising method to study unimolecular fragmentation of much complex systems with molecular simulations. The role of QTB thermostat on rotational degrees of freedom is also analyzed and discussed. </p> </div> </div> </div>


2013 ◽  
Vol 117 (13) ◽  
pp. 6800-6806 ◽  
Author(s):  
M. Jafary-Zadeh ◽  
C. D. Reddy ◽  
Yong-Wei Zhang

2014 ◽  
Vol 687-691 ◽  
pp. 610-615 ◽  
Author(s):  
Hui Liu ◽  
Li Wen Guan

High-dynamic flight simulator (HDFS), using a centrifuge as its motion base, is a machine utilized for simulating the acceleration environment associated with modern advanced tactical aircrafts. This paper models the HDFS as a robotic system with three rotational degrees of freedom. The forward and inverse dynamic formulations are carried out by the recursive Newton-Euler approach. The driving torques acting on the joints are determined on the basis of the inverse dynamic formulation. The formulation has been implemented in two numerical simulation examples, which are used for calculating the maximum torques of actuators and simulating the time-histories of kinematic and dynamic parameters of pure trapezoid Gz-load command profiles, respectively. The simulation results can be applied to the design of the control system. The dynamic modeling approach presented in this paper can also be generalized to some similar devices.


1986 ◽  
Vol 30 (03) ◽  
pp. 177-185
Author(s):  
Michael M. Bernitsas ◽  
John E. Kokarakis

A nonlinear model for the dynamic behavior of tubular beams such as marine risers, pipelines, legs of tension leg platforms, and drill strings is developed. The formulation includes three translational degrees of freedom of the riser cross section and three rotational degrees of freedom for shear and torsion. Nonlinear constitutive equations for cross sections of unequal principal stiffnesses and extensible material are derived. Initial structural imperfections which are inherent in long risers are modeled in the form of initial curvature and geometric torsion which do not induce strains. The inertia forces due to the motion of the riser and internal fluid motions are formulated. The external hydrodynamic and hydrostatic forces are integrated on the riser surface as pressure and traction forces. The model is a comprehensive consistent nonlinear formulation of the riser dynamics and can be used for evaluation of the significance of nonlinear effects.


Author(s):  
M.A. Bubenchikov ◽  
◽  
A.M. Bubenchikov ◽  
D.V. Mamontov ◽  
◽  
...  

The aim of this work is to apply classical mechanics to a description of the dynamic state of C20@C80 diamond complex. Endohedral rotations of fullerenes are of great interest due to the ability of the materials created on the basis of onion complexes to accumulate energy at rotational degrees of freedom. For such systems, a concept of temperature is not specified. In this paper, a closed description of the rotation of large molecules arranged in diamond shells is obtained in the framework of the classical approach. This description is used for C20@C80 diamond complex. Two different problems of molecular dynamics, distinguished by a fixing method for an outer shell of the considered bimolecular complex, are solved. In all the cases, the fullerene rotation frequency is calculated. Since a class of possible motions for a single carbon body (molecule) consists of rotations and translational displacements, the paper presents the equations determining each of these groups of motions. Dynamic equations for rotational motions of molecules are obtained employing the moment of momentum theorem for relative motions of the system near the fullerenes’ centers of mass. These equations specify the operation of the complex as a molecular pendulum. The equations of motion of the fullerenes’ centers of mass determine vibrations in the system, i.e. the operation of the complex as a molecular oscillator.


2002 ◽  
Vol 205 (12) ◽  
pp. 1683-1702 ◽  
Author(s):  
William J. Kargo ◽  
Frank Nelson ◽  
Lawrence C. Rome

SUMMARY Comparative musculoskeletal modeling represents a tool to understand better how motor system parameters are fine-tuned for specific behaviors. Frog jumping is a behavior in which the physical properties of the body and musculotendon actuators may have evolved specifically to extend the limits of performance. Little is known about how the joints of the frog contribute to and limit jumping performance. To address these issues, we developed a skeletal model of the frog Rana pipiens that contained realistic bones, joints and body-segment properties. We performed forward dynamic simulations of jumping to determine the minimal number of joint degrees of freedom required to produce maximal-distance jumps and to produce jumps of varied take-off angles. The forward dynamics of the models was driven with joint torque patterns determined from inverse dynamic analysis of jumping in experimental frogs. When the joints were constrained to rotate in the extension—flexion plane, the simulations produced short jumps with a fixed angle of take-off. We found that, to produce maximal-distance jumping,the skeletal system of the frog must minimally include a gimbal joint at the hip (three rotational degrees of freedom), a universal Hooke's joint at the knee (two rotational degrees of freedom) and pin joints at the ankle,tarsometatarsal, metatarsophalangeal and iliosacral joints (one rotational degree of freedom). One of the knee degrees of freedom represented a unique kinematic mechanism (internal rotation about the long axis of the tibiofibula)and played a crucial role in bringing the feet under the body so that maximal jump distances could be attained. Finally, the out-of-plane degrees of freedom were found to be essential to enable the frog to alter the angle of take-off and thereby permit flexible neuromotor control. The results of this study form a foundation upon which additional model subsystems (e.g. musculotendon and neural) can be added to test the integrative action of the neuromusculoskeletal system during frog jumping.


2018 ◽  
Vol 10 (1) ◽  
pp. 168781401774625 ◽  
Author(s):  
Yulei Hou ◽  
Yi Wang ◽  
Guoning Jing ◽  
Yunjiao Deng ◽  
Daxing Zeng ◽  
...  

The chaos phenomenon often exists in the dynamics system of the mechanism with clearance and friction, which has obvious effect on the stability of the mechanism, then it is worthy of attention for identifying the relationship between the friction coefficient and the stability of the mechanism. Two rotational degrees of freedom decoupled parallel mechanism RU-RPR is taken as the research object. Considering the clearance existing in the revolute pair, Lankarani–Nikravesh contact force model is used to calculate the normal contact force, and the Coulomb friction force model is used to calculate the tangential contact force. The dynamics model is established using Newton–Euler equations, and the Baumgarte stabilization method is used to keep the stability of the numerical analysis. Then, the equations are solved using the fourth adaptive Runge–Kutta method, and the effect of the revolute pair’s clearance on the dynamic behavior is analyzed. Poincare mapping is plotted, and the bifurcation diagrams are analyzed with varying the friction coefficient corresponding to different values of clearance size. The research contents possess a certain theoretical guidance significance and practical application value on the analysis of the chaotic motion and its stability in the dynamics of the parallel mechanism.


Sign in / Sign up

Export Citation Format

Share Document