scholarly journals Chaos phenomenon and stability analysis of RU-RPR parallel mechanism with clearance and friction

2018 ◽  
Vol 10 (1) ◽  
pp. 168781401774625 ◽  
Author(s):  
Yulei Hou ◽  
Yi Wang ◽  
Guoning Jing ◽  
Yunjiao Deng ◽  
Daxing Zeng ◽  
...  

The chaos phenomenon often exists in the dynamics system of the mechanism with clearance and friction, which has obvious effect on the stability of the mechanism, then it is worthy of attention for identifying the relationship between the friction coefficient and the stability of the mechanism. Two rotational degrees of freedom decoupled parallel mechanism RU-RPR is taken as the research object. Considering the clearance existing in the revolute pair, Lankarani–Nikravesh contact force model is used to calculate the normal contact force, and the Coulomb friction force model is used to calculate the tangential contact force. The dynamics model is established using Newton–Euler equations, and the Baumgarte stabilization method is used to keep the stability of the numerical analysis. Then, the equations are solved using the fourth adaptive Runge–Kutta method, and the effect of the revolute pair’s clearance on the dynamic behavior is analyzed. Poincare mapping is plotted, and the bifurcation diagrams are analyzed with varying the friction coefficient corresponding to different values of clearance size. The research contents possess a certain theoretical guidance significance and practical application value on the analysis of the chaotic motion and its stability in the dynamics of the parallel mechanism.

2018 ◽  
Vol 140 (3) ◽  
Author(s):  
Gengxiang Wang ◽  
Hongzhao Liu

Three-dimensional (3D) wear of the clearance spherical joint in four-degrees-of-freedom (DOF) parallel mechanism is predicted based on Archard's wear model. The flexible moving platform is treated as thin plate element based on absolute nodal coordinate formulation (ANCF). The tangent frame is introduced to formulate the constraint equation of universal joint. One of the spherical joints is treated as clearance joint. The normal and tangential contact forces are calculated based on Flores contact force model and modified Coulomb friction model. In order to predict 3D wear, the normal contact force, tangential contact velocity, and eccentricity vector are decomposed in the global coordinate system. Simulation results show that 3D wear occurred in three directions are not uniform each other.


Author(s):  
Nguyen Van Liem ◽  
Wu Zhenpeng ◽  
Jiao Renqiang

The effect of the shape/size and distribution of microgeometries of textures on improving the tribo-performance of crankpin bearing is proposed. Based on a combined model of the slider-crank mechanism dynamic and hydrodynamic lubrication, the distribution density, area density, and shape of spherical textures, square-cylindrical textures, wedge-shaped textures, and a hybrid between spherical texture and square-cylindrical texture on the crankpin bearing's tribo-performance are investigated under different operating conditions of the engine. The tribological characteristic of the crankpin bearing is then evaluated via the indexes of the oil film pressure p, asperity contact force, friction force, and friction coefficient of the crankpin bearing. The research results show that the distribution density with n = 12 and m = 6, and area density with α = 30% of various microtextures have an obvious effect on ameliorating the crankpin bearings tribo-performance. Concurrently, at the mixed lubrication region, the shape of the square-cylindrical texture on improving the tribo-performance is better than the other shapes of the spherical texture, wedge-shaped texture, and spherical and square-cylindrical texture. Particularly, all the average values of the asperity contact force, friction force, and friction coefficient with a square-cylindrical texture are significantly reduced by 14.6%, 19.5%, and 34.5%, respectively, in comparison without microtextures. Therefore, the microtextures of the spherical texture applied on the bearing surface can contribute to enhance the durability and decrease the friction power loss of the engine.


Author(s):  
Willem Petersen ◽  
John McPhee

For the multibody simulation of planetary rover operations, a wheel-soil contact model is necessary to represent the forces and moments between the tire and the soft soil. A novel nonlinear contact modelling approach based on the properties of the hypervolume of interpenetration is validated in this paper. This normal contact force model is based on the Winkler foundation model with nonlinear spring properties. To fully define the proposed normal contact force model for this application, seven parameters are required. Besides the geometry parameters that can be easily measured, three soil parameters representing the hyperelastic and plastic properties of the soil have to be identified. Since it is very difficult to directly measure the latter set of soil parameters, they are identified by comparing computer simulations with experimental results of drawbar pull tests performed under different slip conditions on the Juno rover of the Canadian Space Agency (CSA). A multibody dynamics model of the Juno rover including the new wheel/soil interaction model was developed and simulated in MapleSim. To identify the wheel/soil contact model parameters, the cost function of the model residuals of the kinematic data is minimized. The volumetric contact model is then tested by using the identified contact model parameters in a forward dynamics simulation of the rover on an irregular 3-dimensional terrain and compared against experiments.


2010 ◽  
Vol 44-47 ◽  
pp. 1923-1927 ◽  
Author(s):  
Xian Jie Meng

A two degrees of freedom nonlinear dynamics model of self-excited vibration induced by dry-friction of brake disk and pads is built firstly, the stability of vibration system at the equilibrium points is analyzed using the nonlinear dynamics theory. Finally the numerical method is taken to study the impacts of friction coefficient on brake groan. The calculation result shows that with the increase of kinetic friction coefficient /or the decrease of difference value between static friction coefficient and kinetic friction coefficient can prevent or restrain self-excited vibration from happening.


Author(s):  
Chen Xiulong ◽  
Jiang Shuai ◽  
Deng Yu ◽  
Wang Qing

In order to understand dynamic responses of planar rigid-body mechanism with clearance, the dynamic model of the mechanism with revolute clearance is proposed and the dynamic analysis is realized. First, the kinematic model of the revolute clearance is built; the amount of penetration depth and relative velocity between the elements of the revolute clearance joint is obtained. Second, Lankarani-Nikravesh (L-N) and the novel nonlinear contact force model are both used to describe the normal contact force of the revolute clearance, and the tangential contact force of the revolute clearance is built by modified Coulomb friction model. Third, the dynamic model of a two degrees-of-freedom (2DOFs) nine bars rigid-body mechanism with a revolute clearance is built by the Lagrange equation. The fourth-order Runge–Kutta method has been utilized to solve the dynamic model. And the effects of different driving speeds of cranks, different clearance values, and different friction coefficients on dynamic response are analyzed. Finally, in order to prove the validity of numerical calculation result, the virtual prototype model of 2DOFs nine bars mechanism with clearance is modeled and its dynamic responses are analyzed by adams software. This research could supply theoretical basis for dynamic modeling, dynamic behaviors analysis, and clearance compensation control of planar rigid-body mechanism with clearance.


2019 ◽  
Vol 17 (09) ◽  
pp. 1950068
Author(s):  
Xunnan Liu ◽  
Lanhao Zhao ◽  
Jia Mao ◽  
Tongchun Li

In the past, contact model in the combined finite-discrete element method (FDEM) does not include the influence of the tangential contact interaction, and the deficient model associated with the contact force can seriously degrade the computing accuracy. In order to overcome this defect, an improved FDEM is developed in this work. The potential contact mechanism is implemented to calculate the normal contact force; meanwhile, the force-displacement law by coupling the classical Mohr–Coulomb type frictional algorithm and the rotation transformation algorithm is applied for the accurate computation of the tangential contact force. Consequently, a holonomic system of the calculation algorithm for the contact interaction is proposed, accounting for the influence of the tangential contact force. The performance of the approach is validated with well-known benchmarks including a frictional numerical test, the dynamic response of the block under the seismic excitation, a sliding/toppling test of a joint rock slope, a numerical simulation for joints structure affecting a sliding rock mass and the 2008 Donghekou Landslide trigged by the Wenchuan Earthquake. The results are compared against the experimental data and analytical solutions. Excellent agreements between the computational result and existing measurements show that the proposed approach has an outstanding ability to describe the complex mechanical properties among the separate entities.


Author(s):  
Bo Zhao ◽  
Xudong Dai ◽  
Shihao Wu

By integrating the procedures of wear prediction with multibody dynamics, this paper proposed a numerical approach for the modeling and prediction of wear at revolute clearance joint in flexible multibody mechanical systems. In the approach, the flexible component was modeled by using absolute nodal coordinate formulation (ANCF)-based element. The clearance joint was modeled as a dry contact pair, in which the continuous contact force model proposed by Lankanrani and Nikravesh was applied to evaluate the normal contact force, and the friction effect was considered using the LuGre friction model. The calculation of wear was performed by an iterative wear prediction procedure based on Archard’s wear model. Using this approach, a planar slider-crank mechanism including a flexible rod and clearance joint was numerically investigated as a demonstrative example. Furthermore, the effects of the flexibility of the mechanism and the clearance size on the wear at clearance joint were also studied.


2012 ◽  
Vol 28 (4) ◽  
pp. 500-508 ◽  
Author(s):  
Tao Sun ◽  
Yimin Song ◽  
Gang Dong ◽  
Binbin Lian ◽  
Jianping Liu

2020 ◽  
pp. 1-24
Author(s):  
Kaiyu Wu ◽  
Fan Zhang ◽  
Guohua Cui ◽  
Jing Sun ◽  
Minhua Zheng

Abstract A decoupled mechanism based on intersecting planes that can be considered a parallel mechanism with two arms is presented in this paper. The end-effector is connected to the base through two planar serial arms. The new specific characteristics of novel mechanism allow the generation of a Remote Center of Motion (RCM) possessing two decoupled rotational degrees of freedom (DoF) and a tanslational DoF. Compared with the RCM mechanism based on intersecting planes proposed by Li et al, due to the decoupling characteristics of this mechanism make it has a simpler control scheme and a larger workspace. This mechanisms also eliminates the singularity inside its workspace that impairs the original mechanism. In the final part of the paper, through an analysis of the force transmission performance, we derive a method to adjust the length of the linkage to optimize its force transmission performance.


2020 ◽  
Vol 103 (4) ◽  
pp. 003685042096957
Author(s):  
Liangliang Ding ◽  
Miao Xian ◽  
Qiang Zhang

Casing wear is a serious problem in highly-deviated wells because serious wear will lead to casing deformation, drilling tool sticking and failure of subsequent operations. The purpose of this paper is to predict casing wear depth and evaluate its effect on casing strength degradation in highly-deviated well drilling operation. Special attention has been given to the algorithm to achieve the prediction and evaluation. The effect of tool joint on contact force distribution is considered in contact force model. Then a wear depth prediction model and its solution method are proposed based on crescent-shaped wear morphology and wear-efficiency model. Besides, strength degradation of worn casing is analyzed in bipolar coordinate system and the model is verified by finite element method. Therefore, the technology of casing wear prediction and residual strength evaluation is completed systematically. Then, to apply casing wear prediction and residual strength evaluation technologies to an actual highly-deviated well, casing wear experiment and friction coefficient experiment are carried out to obtain wear coefficient and friction coefficient. Finally, based on the established models as well as experimental results, the distribution of casing wear is predicted and residual strength is evaluated. The method presented in this paper will contribute greatly to casing wear prediction and evaluation in highly-deviated wells.


Sign in / Sign up

Export Citation Format

Share Document