baumgarte stabilization
Recently Published Documents


TOTAL DOCUMENTS

10
(FIVE YEARS 1)

H-INDEX

3
(FIVE YEARS 0)

2021 ◽  
Vol 143 (6) ◽  
Author(s):  
Stian Skjong ◽  
Karl Johan Reite ◽  
Karl Gunnar Aarsæther

Abstract This paper presents a modeling approach for efficient simulation of slender structures, such as wires, cables and ropes. Lumped structural elements are connected using constraints. These are solved explicitly, using an elastic version of Baumgarte stabilization. This avoids singularities in the matrix inversions. The resulting explicit state-space formulation filters the higher order dynamics and can be solved using simple numerical integration methods. Constraints are demonstrated for modeling different aspects: Internal cable forces, one cable sliding along another cable and contact between cable and seabed. Also, a cable initialization routine is presented for rapid building of different interconnected cable geometries, ranging from cases in offshore crane operations to in-sea equipment such as seismic cables. Two case studies are presented to illustrate the effectiveness and the robustness of the proposed modeling approach; the first one being a test of two connected, sinking cables, and the last one being a larger case demonstrating the use of the cable library in an offshore seismic survey case.


2018 ◽  
Vol 10 (1) ◽  
pp. 168781401774625 ◽  
Author(s):  
Yulei Hou ◽  
Yi Wang ◽  
Guoning Jing ◽  
Yunjiao Deng ◽  
Daxing Zeng ◽  
...  

The chaos phenomenon often exists in the dynamics system of the mechanism with clearance and friction, which has obvious effect on the stability of the mechanism, then it is worthy of attention for identifying the relationship between the friction coefficient and the stability of the mechanism. Two rotational degrees of freedom decoupled parallel mechanism RU-RPR is taken as the research object. Considering the clearance existing in the revolute pair, Lankarani–Nikravesh contact force model is used to calculate the normal contact force, and the Coulomb friction force model is used to calculate the tangential contact force. The dynamics model is established using Newton–Euler equations, and the Baumgarte stabilization method is used to keep the stability of the numerical analysis. Then, the equations are solved using the fourth adaptive Runge–Kutta method, and the effect of the revolute pair’s clearance on the dynamic behavior is analyzed. Poincare mapping is plotted, and the bifurcation diagrams are analyzed with varying the friction coefficient corresponding to different values of clearance size. The research contents possess a certain theoretical guidance significance and practical application value on the analysis of the chaotic motion and its stability in the dynamics of the parallel mechanism.


Author(s):  
Paulo Flores ◽  
Margarida Machado ◽  
Eurico Seabra ◽  
Miguel Tavares da Silva

This paper presents and discusses the results obtained from a parametric study on the Baumgarte stabilization method for forward dynamics of constrained multibody systems. The main purpose of this work is to analyze the influence of the variables that affect the violation of constraints, chiefly the values of the Baumgarte parameters, the integration method, the time step, and the quality of the initial conditions for the positions. In the sequel of this process, the formulation of the rigid multibody systems is reviewed. The generalized Cartesian coordinates are selected as the variables to describe the bodies’ degrees of freedom. The formulation of the equations of motion uses the Newton–Euler approach, augmented with the constraint equations that lead to a set of differential algebraic equations. Furthermore, the main issues related to the stabilization of the violation of constraints based on the Baumgarte approach are revised. Special attention is also given to some techniques that help in the selection process of the values of the Baumgarte parameters, namely, those based on the Taylor’s series and the Laplace transform technique. Finally, a slider-crank mechanism with eccentricity is considered as an example of application in order to illustrate how the violation of constraints can be affected by different factors.


Author(s):  
Hiroaki Yoshimura ◽  
Kenji Soya

This paper develops a discrete Hamiltonian system with holonomic constraints with Geometric Constraint Stabilization. It is first shown that constrained mechanical systems with nonconservative external forces can be formulated by using canonical symplectic structures in the context of Hamiltonian systems. Second, it is shown that discrete holonomic Hamiltonian systems can be developed via the discretization based on the Backward Differentiation Formula and also that geometric constraint stabilization can be incorporated into the discrete Hamiltonian systems. It is demonstrated that the proposed method enables one to stabilize constraint violations effectively in comparison with conventional methods such as Baumgarte Stabilization and Gear–Gupta–Leimkuhler Stabilization, together with an illustrative example of linkage mechanisms.


Author(s):  
Paulo Flores ◽  
Margarida Machado ◽  
Eurico Seabra ◽  
Miguel Tavares da Silva

This paper presents and discusses the results obtained from a parametric study on the Baumgarte stabilization method for forward dynamics of constrained multibody systems. The main purpose of this work is to analyze the influence of the variables that affect the violation of constraints, chiefly the values of the Baumgarte parameters, the integration method, the time step and the quality of the initial conditions for the positions. In the sequel of this process the formulation of the rigid multibody systems is reviewed. The generalized Cartesian coordinates are selected as the variables to describe the bodies’ degrees of freedom. The formulation of the equations of motion uses the Newton-Euler approach that is augmented with the constraint equations that lead to a set of differential algebraic equations. Furthermore, the main issues related to the stabilization of the violation of constraints based on the Baumgarte approach are revised. Special attention is also given to some techniques that help in the selection process of the values of the Baumgarte parameters, namely those based on the Taylor’s series and Laplace transform technique. Finally, a slider crank mechanism with eccentricity is considered as an example of application in order to illustrated how the violation of constraints can be affected by different factors such as the Baumgarte parameters, integrator, time step and initial guesses.


Author(s):  
Janzen Lo ◽  
Dimitris Metaxas ◽  
Norman I. Badler

Abstract We develop a method for animating systems with open and closed loops and in particular ladder climbing for virtual world applications. Ladder climbing requires the modeling of dynamic open and closed-loop chains. We model the stance phase and the associated closed-loop dynamics, through the use of the Lagrange multiplier method which results in a system of differential algebraic equations (DAE). We use the Lagrange method for the dynamic formulation of the swing phase. The input to the algorithm is a given forward velocity, step length, step frequency and a chosen gait. The algorithm then determines the initial and final positions for each phase of ladder climbing. We use the Newton-Ralphson method to find the vector of joint torques that drives the dynamic system from the initial position to the final position. We use the Baumgarte stabilization method to achieve stability of the numerical integration. We present a series of real-time animations involving ladder climbing.


Sign in / Sign up

Export Citation Format

Share Document