scholarly journals Diagonally Scanned Light-Sheet Microscopy for Fast Volumetric Imaging of Adherent Cells

2016 ◽  
Vol 110 (6) ◽  
pp. 1456-1465 ◽  
Author(s):  
Kevin M. Dean ◽  
Philippe Roudot ◽  
Carlos R. Reis ◽  
Erik S. Welf ◽  
Marcel Mettlen ◽  
...  
Lab on a Chip ◽  
2021 ◽  
Author(s):  
Xiaopeng Chen ◽  
Junyu Ping ◽  
Yixuan Sun ◽  
Chengqiang Yi ◽  
Sijian Liu ◽  
...  

Volumetric imaging of dynamic signals in a large, moving, and light-scattering specimen is extremely challenging, owing to the requirement on high spatiotemporal resolution and difficulty in obtaining high-contrast signals. Here...


2021 ◽  
Author(s):  
Adam Glaser ◽  
Kevin Bishop ◽  
Lindsey Barner ◽  
Etsuo Susaki ◽  
Shimpei Kubota ◽  
...  

Abstract Light-sheet microscopy has emerged as the preferred means for high-throughput volumetric imaging of cleared tissues. However, there is a need for a user-friendly system that can address imaging applications with varied requirements in terms of resolution (mesoscopic to sub-micrometer), sample geometry (size, shape, and number), and compatibility with tissue-clearing protocols and sample holders of various refractive indices. We present a ‘hybrid’ system that combines a novel non-orthogonal dual-objective and conventional (orthogonal) open-top light-sheet architecture for versatile multi-scale volumetric imaging.


2020 ◽  
Author(s):  
Finian Leyden ◽  
Sanjeev Uthishtran ◽  
U K Moorthi ◽  
H M York ◽  
A Patil ◽  
...  

ABSTRACTMembrane protrusions that occur on the dorsal surface of a cell are an excellent experimental system to study actin machinery at work in a living cell. Small GTPase Rac1 controls the membrane protrusions that form and encapsulate extracellular volumes to perform pinocytic or phagocytic functions. Here, capitalizing on rapid volumetric imaging capabilities of lattice light-sheet microscopy (LLSM), we describe optogenetic approaches using photoactivable Rac1 (PA-Rac1) for controlled ruffle generation. We demonstrate that PA-Rac1 activation needs to be continuous, suggesting a threshold local concentration for sustained actin polymerization leading to ruffling. We show that Rac1 activation leads to actin assembly at the dorsal surface of the cell membrane that result in sheet-like protrusion formation without any requirement of a template. Further, this approach can be used to study the complex morpho-dynamics of the protrusions or to investigate specific proteins that may be enriched in the ruffles. Deactivating PA-Rac1 leads to complex contractile processes resulting in formation of macropinosomes. Using multicolour imaging in combination with these approaches, we find that Myo1e specifically is enriched in the ruffles.


2019 ◽  
Vol 1 (01) ◽  
pp. 1 ◽  
Author(s):  
Peng Fei ◽  
Jun Nie ◽  
Juhyun Lee ◽  
Yichen Ding ◽  
Shuoran Li ◽  
...  

2021 ◽  
Author(s):  
Peng Fei

Long-term visualization of the dynamic organelle-organelle or protein-organelle interactions throughout the three-dimensional space of whole live cells is essential to better understand their functions, but this task remains challenging due to the limitations of existing three-dimensional fluorescence microscopy techniques, such as an insufficient axial resolution, low volumetric imaging rate, and photobleaching. Here, we present the combination of a progressive deep-learning superresolution strategy with a dual-ring-modulated SPIM design capable of visualizing the dynamics of intracellular organelles in live cells for hours at an isotropic spatial resolution of ~100 nm in three dimensions and a temporal resolution up to ~17 Hz. With a compelling spatiotemporal resolution, we substantially reveal the complex spatial relationships and interactions between the endoplasmic reticulum (ER) and mitochondria throughout live cells, providing new insights into ER-mediated mitochondrial division. We also localized the motion of Drp1 oligomers in three dimensions and observed Drp1-mediated mitochondrial branching for the first time.


2017 ◽  
Author(s):  
Hao Wang ◽  
Qingyuan Zhu ◽  
Lufeng Ding ◽  
Yan Shen ◽  
Chao-Yu Yang ◽  
...  

We describe a new light-sheet microscopy method for fast, large-scale volumetric imaging. Combining synchronized scanning illumination and oblique imaging over cleared, thick tissue sections in smooth motion, our approach achieves high-speed 3D image acquisition of an entire mouse brain within 2 hours, at a resolution capable of resolving synaptic spines. It is compatible with immunofluorescence labeling, enabling flexible cell-type specific brain mapping, and is readily scalable for large biological samples such as primate brain.


2018 ◽  
Author(s):  
Peng Fei ◽  
Jun Nie ◽  
Juhyun Lee ◽  
Yichen Ding ◽  
Shuoran Li ◽  
...  

A key challenge when imaging whole biomedical specimens is how to quickly obtain massive cellular information over a large field of view (FOV). Here, we report a sub-voxel light-sheet microscopy (SLSM) method enabling high-throughput volumetric imaging of mesoscale specimens at cellular-resolution. A non-axial, continuous scanning strategy is used to rapidly acquire a stack of large-FOV images with three-dimensional (3-D) nanoscale shifts encoded. Then by adopting a sub-voxel-resolving procedure, the SLSM method models these low-resolution, cross-correlated images in the spatial domain and iteratively recovers a 3-D image with improved resolution throughout the sample. This technique can surpass the optical limit of a conventional light-sheet microscope by more than three times, with high acquisition speeds of gigavoxels per minute. As demonstrated by quick reconstruction (minutes to hours) of various samples, e.g., 3-D cultured cells, an intact mouse heart, mouse brain, and live zebrafish embryo, the SLSM method presents a high-throughput way to circumvent the tradeoff between intoto mapping of large-scale tissue (>100 mm3) and isotropic imaging of single-cell (~1-μm resolution). It also eliminates the need of complicated mechanical stitching or precisely modulated illumination, using a simple light-sheet setup and fast graphics-processing-unit (GPU)-based computation to achieve high-throughput, high-resolution 3-D microscopy, which could be tailored for a wide range of biomedical applications in pathology, histology, neuroscience, etc.


Sign in / Sign up

Export Citation Format

Share Document