scholarly journals Bacterial Type 3 Secretion Systems: High-Throughput 3D Single-Molecule Tracking of Sorting Platform Proteins in Live Cells

2017 ◽  
Vol 112 (3) ◽  
pp. 149a
Author(s):  
Julian Rocha ◽  
Andreas Diepold ◽  
Judith P. Armitage ◽  
Andreas Gahlmann
2018 ◽  
Vol 114 (3) ◽  
pp. 534a
Author(s):  
Julian Rocha ◽  
Charles Richardson ◽  
Mingxing Zhang ◽  
Andreas Diepold ◽  
Andreas Gahlmann

2017 ◽  
Author(s):  
Julian Rocha ◽  
Charles Richardson ◽  
Mingxing Zhang ◽  
Caroline Darch ◽  
Eugene Cai ◽  
...  

AbstractIn bacterial type 3 secretion, substrate proteins are actively transported from the bacterial cytoplasm into the host cell cytoplasm by a large membrane-embedded machinery called the injectisome. Injectisomes transport secretion substrates in response to specific environmental signals, but the molecular details by which the cytosolic secretion substrates are selected and transported through the type 3 secretion pathway remain unclear. Secretion activity and substrate selectivity are thought to be controlled by a sorting platform consisting of the proteins SctK, SctQ, SctL, and SctN, which together localize to the cytoplasmic side of membrane-embedded injectisomes. However, recent work revealed that sorting platform proteins additionally exhibit substantial cytosolic populations and that SctQ reversibly binds to and dissociates from the cytoplasmic side of membrane-embedded injectisomes. Based on these observations, we hypothesized that dynamic molecular turnover at the injectisome and cytosolic assembly among sorting platform proteins is a critical regulatory component of type 3 secretion. To determine whether sorting platform complexes exist in the cytosol, we measured the diffusive properties of the two central sorting platform proteins, SctQ and SctL, using live cell high-throughput 3D single-molecule tracking microscopy. Single-molecule trajectories, measured in wild-type and mutantYersinia enterocoliticacells, reveal that both SctQ and SctL exist in several distinct diffusive states in the cytosol, indicating that these proteins form stable homo- and hetero-oligomeric complexes in their native environment. Our findings provide the first diffusive state-resolved insights into the dynamic regulatory network that interfaces stationary membrane-embedded injectisomes with the soluble cytosolic components of the type 3 secretion system.


2014 ◽  
Vol 107 (4) ◽  
pp. 803-814 ◽  
Author(s):  
Peter J. Bosch ◽  
Ivan R. Corrêa ◽  
Michael H. Sonntag ◽  
Jenny Ibach ◽  
Luc Brunsveld ◽  
...  

Author(s):  
Ália dos Santos ◽  
Natalia Fili ◽  
David S. Pearson ◽  
Yukti Hari-Gupta ◽  
Christopher P. Toseland

ABSTRACTMechanobiology is focused on how the physical forces and the mechanical properties of proteins, cells and tissues contribute to physiology and disease. While the response of proteins and cells to mechanical stimuli is critical for function, the tools to probe these activities are typically restricted to single molecule manipulations. Here, we have developed a novel microplate reader assay to encompass mechanical measurements with ensemble biochemical and cellular assays, using a microplate lid modified with magnets. This configuration enables multiple static magnetic tweezers to function simultaneously across the microplate, thereby greatly increasing throughput. The broad applicability and versatility of our approach has been demonstrated through in vitro force-induced enzymatic activity and conformation changes, along with force-induced receptor activation and their downstream signalling pathways in live cells. Overall, our methodology allows for the first-time ensemble biochemical and cell-based assays to be performed under force, in high throughput format. This novel approach would substantially add to the mechano-biological toolbox and increase the availability of mechanobiology measurements.


mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Sandra Kunz ◽  
Anke Tribensky ◽  
Wieland Steinchen ◽  
Luis Oviedo-Bocanegra ◽  
Patricia Bedrunka ◽  
...  

ABSTRACT Bacillus subtilis contains two known cyclic di-GMP (c-di-GMP)-dependent receptors, YdaK and DgrA, as well as three diguanylate cyclases (DGCs): soluble DgcP and membrane-integral DgcK and DgcW. DgrA regulates motility, while YdaK is responsible for the formation of a putative exopolysaccharide, dependent on the activity of DgcK. Using single-molecule tracking, we show that a majority of DgcK molecules are statically positioned in the cell membrane but significantly less so in the absence of YdaK but more so upon overproduction of YdaK. The soluble domains of DgcK and of YdaK show a direct interaction in vitro, which depends on an intact I-site within the degenerated GGDEF domain of YdaK. These experiments suggest a direct handover of a second messenger at a single subcellular site. Interestingly, all three DGC proteins contribute toward downregulation of motility via the PilZ protein DgrA. Deletion of dgrA also affects the mobility of DgcK within the membrane and also that of DgcP, which arrests less often at the membrane in the absence of DgrA. Both, DgcK and DgcP interact with DgrA in vitro, showing that divergent as well as convergent direct connections exist between cyclases and their effector proteins. Automated determination of molecule numbers in live cells revealed that DgcK and DgcP are present at very low copy numbers of 6 or 25 per cell, respectively, such that for DgcK, a part of the cell population does not contain any DgcK molecule, rendering signaling via c-di-GMP extremely efficient. IMPORTANCE Second messengers are free to diffuse through the cells and to activate all responsive elements. Cyclic di-GMP (c-di-GMP) signaling plays an important role in the determination of the life style transition between motility and sessility/biofilm formation but involves numerous distinct synthetases (diguanylate cyclases [DGCs]) or receptor pathways that appear to act in an independent manner. Using Bacillus subtilis as a model organism, we show that for two c-di-GMP pathways, DGCs and receptor molecules operate via direct interactions, where a synthesized dinucleotide appears to be directly used for the protein-protein interaction. We show that very few DGC molecules exist within cells; in the case of exopolysaccharide (EPS) formation via membrane protein DgcK, the DGC molecules act at a single site, setting up a single signaling pool within the cell membrane. Using single-molecule tracking, we show that the soluble DGC DgcP arrests at the cell membrane, interacting with its receptor, DgrA, which slows down motility. DgrA also directly binds to DgcK, showing that divergent as well as convergent modules exist in B. subtilis. Thus, local-pool signal transduction operates extremely efficiently and specifically.


Sign in / Sign up

Export Citation Format

Share Document