Differences in Diffusion-Weighted Imaging and Resting-State Functional Connectivity Between Two Culturally Distinct Populations of Prairie Vole

Author(s):  
Richard Ortiz ◽  
Jason R. Yee ◽  
Praveen P. Kulkarni ◽  
Nancy G. Solomon ◽  
Brian Keane ◽  
...  
2020 ◽  
Author(s):  
Praveen Kulkarni ◽  
Simone Grant ◽  
Thomas Morrison ◽  
Xuezhu Cai ◽  
Sade Iriah ◽  
...  

Abstract Background: The APOE Ɛ4 genotype is the most prevalent genetic risk for Alzheimer's disease (AD). Women carriers of Ɛ4 have higher risk for an early onset of AD than men. Human imaging studies suggest apolipoprotein E4 may affect brain structures associated with cognitive decline in AD many years before disease onset. It was hypothesized that female APOE Ɛ4 carriers would present with decreased cognitive function and neuroradiological evidence of early changes in brain structure and function as compared to male carriers. Methods: Six-month old wild-type (WT) and human APOE Ɛ4 knock-in (TGRA8960), male and female Sprague Dawley rats were studied for changes in brain structure using voxel-based morphometry, alteration in white and gray matter microarchitecture using diffusion weighted imaging with indices of anisotropy, and functional coupling using resting state BOLD functional connectivity. Images from each modality were registered to, and analyzed, using a 3D MRI rat atlas providing site-specific data on over 168 different brain areas. Results: Quantitative volumetric analysis revealed areas involved in memory and arousal were significantly different between Ɛ4 and wild-type (WT) females, with few differences between male genotypes. Diffusion weighted imaging showed few differences between WT and Ɛ4 females, while male genotypes showed significant different measures in fractional anisotropy and apparent diffusion coefficient. Resting state functional connectivity showed Ɛ4 females had greater connectivity between areas involved in cognition, emotion, and arousal compared to WT females, with male Ɛ4 showing few differences from controls. Interestingly, male Ɛ4 showed increased anxiety and decreased performance in spatial and episodic memory tasks compared to WT males, with female genotypes showing little difference across behavioral tests.Conclusion: The sex differences in behavior and diffusion weighted imaging suggest male carriers of the Ɛ4 allele may be more vulnerable to cognitive and emotional complications compared to female carriers early in life. Conversely, the data may also suggest that female carriers are more resilient to cognitive/emotional problems at this stage of life perhaps due to altered brain volumes and enhanced connectivity.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1889-P
Author(s):  
ALLISON L.B. SHAPIRO ◽  
SUSAN L. JOHNSON ◽  
BRIANNE MOHL ◽  
GRETA WILKENING ◽  
KRISTINA T. LEGGET ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maria J. S. Guerreiro ◽  
Madita Linke ◽  
Sunitha Lingareddy ◽  
Ramesh Kekunnaya ◽  
Brigitte Röder

AbstractLower resting-state functional connectivity (RSFC) between ‘visual’ and non-‘visual’ neural circuits has been reported as a hallmark of congenital blindness. In sighted individuals, RSFC between visual and non-visual brain regions has been shown to increase during rest with eyes closed relative to rest with eyes open. To determine the role of visual experience on the modulation of RSFC by resting state condition—as well as to evaluate the effect of resting state condition on group differences in RSFC—, we compared RSFC between visual and somatosensory/auditory regions in congenitally blind individuals (n = 9) and sighted participants (n = 9) during eyes open and eyes closed conditions. In the sighted group, we replicated the increase of RSFC between visual and non-visual areas during rest with eyes closed relative to rest with eyes open. This was not the case in the congenitally blind group, resulting in a lower RSFC between ‘visual’ and non-‘visual’ circuits relative to sighted controls only in the eyes closed condition. These results indicate that visual experience is necessary for the modulation of RSFC by resting state condition and highlight the importance of considering whether sighted controls should be tested with eyes open or closed in studies of functional brain reorganization as a consequence of blindness.


2021 ◽  
pp. 100345
Author(s):  
Zahra Rezaei ◽  
Zahra Jafari ◽  
Navvab Afrashteh ◽  
Reza Torabi ◽  
Surjeet Singh ◽  
...  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Tiffany Bell ◽  
Akashroop Khaira ◽  
Mehak Stokoe ◽  
Megan Webb ◽  
Melanie Noel ◽  
...  

Abstract Background Migraine affects roughly 10% of youth aged 5–15 years, however the underlying mechanisms of migraine in youth are poorly understood. Multiple structural and functional alterations have been shown in the brains of adult migraine sufferers. This study aims to investigate the effects of migraine on resting-state functional connectivity during the period of transition from childhood to adolescence, a critical period of brain development and the time when rates of pediatric chronic pain spikes. Methods Using independent component analysis, we compared resting state network spatial maps and power spectra between youth with migraine aged 7–15 and age-matched controls. Statistical comparisons were conducted using a MANCOVA analysis. Results We show (1) group by age interaction effects on connectivity in the visual and salience networks, group by sex interaction effects on connectivity in the default mode network and group by pubertal status interaction effects on connectivity in visual and frontal parietal networks, and (2) relationships between connectivity in the visual networks and the migraine cycle, and age by cycle interaction effects on connectivity in the visual, default mode and sensorimotor networks. Conclusions We demonstrate that brain alterations begin early in youth with migraine and are modulated by development. This highlights the need for further study into the neural mechanisms of migraine in youth specifically, to aid in the development of more effective treatments.


Sign in / Sign up

Export Citation Format

Share Document