Effect of aminoguanidine on post-ischemic brain edema in transient model of focal cerebral ischemia

2007 ◽  
Vol 1170 ◽  
pp. 97-102 ◽  
Author(s):  
Abedin Vakili ◽  
Fezzeh Hosseinzadeh ◽  
Toktam Sadogh
2015 ◽  
Vol 24 (1) ◽  
pp. 41-54 ◽  
Author(s):  
Juhyun Song ◽  
Joohyun Park ◽  
Jae Hwan Kim ◽  
Ja Yong Choi ◽  
Jae Young Kim ◽  
...  

Stroke ◽  
1986 ◽  
Vol 17 (6) ◽  
pp. 1149-1152 ◽  
Author(s):  
Y Horikawa ◽  
S Naruse ◽  
C Tanaka ◽  
K Hirakawa ◽  
H Nishikawa

Stroke ◽  
1980 ◽  
Vol 11 (6) ◽  
pp. 593-601 ◽  
Author(s):  
F J Schuier ◽  
K A Hossmann

Stroke ◽  
1987 ◽  
Vol 18 (1) ◽  
pp. 150-157 ◽  
Author(s):  
W D Lo ◽  
A L Betz ◽  
G P Schielke ◽  
J T Hoff

2014 ◽  
Vol 127 ◽  
pp. 5-9 ◽  
Author(s):  
Wen-Wen Wang ◽  
Cheng-long Xie ◽  
Li-Li Zhou ◽  
Guo-Sheng Wang

1989 ◽  
Vol 70 (1) ◽  
pp. 73-80 ◽  
Author(s):  
Toshihiko Kuroiwa ◽  
Makoto Shibutani ◽  
Riki Okeda

✓ The effect of suppression of postischemic reactive hyperemia on the blood-brain barrier (BBB) and ischemic brain edema after temporary focal cerebral ischemia was studied in cats under ketamine and alpha-chloralose anesthesia. Regional cerebral blood flow (rCBF) was measured by a thermal diffusion method and a hydrogen clearance method. The animals were separated into three groups. In Group A, the left middle cerebral artery (MCA) was occluded for 6 hours. In Group B, the MCA was occluded for 3 hours and then reperfused for 3 hours; postischemic hyperemia was suppressed to the preischemic level by regulating the degree of MCA constriction. In Group C, the MCA was occluded for 3 hours and reperfused for 3 hours without suppressing the postischemic reactive hyperemia. The brain was removed and cut coronally at the site of rCBF measurement. The degree of ischemic edema was assessed by gravimetry in samples taken from the coronal section and correlated with the degree of BBB disruption at the corresponding sites, evaluated by densitometric determination of Evans blue discoloration. The findings showed that 1) ischemic edema was significantly exacerbated by postischemic hyperemia during reperfusion in parallel with the degree of BBB opening to serum proteins, and 2) suppression of postischemic hyperemia significantly reduced the exacerbation of ischemic edema and BBB opening. These findings indicate that blood flow may be restored without significant exacerbation of postischemic edema by the suppression of postischemic hyperemia in focal cerebral ischemia.


1996 ◽  
Vol 16 (6) ◽  
pp. 1189-1202 ◽  
Author(s):  
L. Creed Pettigrew ◽  
Mary L. Holtz ◽  
Susan D. Craddock ◽  
Stephen L. Minger ◽  
Nathan Hall ◽  
...  

Calpain, a neutral protease activated by calcium, may promote microtubular proteolysis in ischemic brain. We tested this hypothesis in an animal model of focal cerebral ischemia without reperfusion. The earliest sign of tissue injury was observed after no more than 15 min of ischemia, with coiling of apical dendrites immunolabeled to show microtubule-associated protein 2 (MAP2). After 6 h of ischemia, MAP2 immunoreactivity was markedly diminished in the infarct zone. Quantitative Western analysis demonstrated that MAP2 was almost unmeasurable after 24 h of ischemia. An increase in calpain activity, shown by an antibody recognizing calpain-cleaved spectrin fragments, paralleled the loss of MAP2 immunostaining. Double-labeled immunofluorescent studies showed that intraneuronal calpain activity preceded evidence of MAP2 proteolysis. Perikaryal immunolabeling of τ protein became increasingly prominent between 1 and 6 h in neurons located within the transition zone between ischemic and unaffected tissue. Western blot experiments confirmed that dephosphorylation of τ protein occurred during 24 h of ischemia, but was not associated with significant loss of τ antigen. We conclude that focal cerebral ischemia is associated with early microtubular proteolysis caused by calpain.


2009 ◽  
Vol 30 (5) ◽  
pp. 943-949 ◽  
Author(s):  
Jae Hwan Kim ◽  
Yong Woo Lee ◽  
Kyung Ah Park ◽  
Won Taek Lee ◽  
Jong Eun Lee

Brain edema is frequently shown after cerebral ischemia. It is an expansion of brain volume because of increasing water content in brain. It causes to increase mortality after stroke. Agmatine, formed by the decarboxylation of L-arginine by arginine decarboxylase, has been shown to be neuroprotective in trauma and ischemia models. The purpose of this study was to investigate the effect of agmatine for brain edema in ischemic brain damage and to evaluate the expression of aquaporins (AQPs). Results showed that agmatine significantly reduced brain swelling volume 22 h after 2 h middle cerebral artery occlusion in mice. Water content in brain tissue was clearly decreased 24 h after ischemic injury by agmatine treatment. Blood–brain barrier (BBB) disruption was diminished with agmatine than without. The expressions of AQPs-1 and -9 were well correlated with brain edema as water channels, were significantly decreased by agmatine treatment. It can thus be suggested that agmatine could attenuate brain edema by limitting BBB disruption and blocking the accumulation of brain water content through lessening the expression of AQP-1 after cerebral ischemia.


Sign in / Sign up

Export Citation Format

Share Document