Neonatal isolation stress alters bidirectional long-term synaptic plasticity in amygdalo-hippocampal synapses in freely behaving adult rats

2008 ◽  
Vol 1193 ◽  
pp. 25-33 ◽  
Author(s):  
J. Harry Blaise ◽  
Jessica L. Koranda ◽  
Urey Chow ◽  
Kaitlin E. Haines ◽  
Emily C. Dorward
2007 ◽  
Vol 98 (2) ◽  
pp. 594-601 ◽  
Author(s):  
Ashok Kumar ◽  
Jeffrey S. Thinschmidt ◽  
Thomas C. Foster ◽  
Michael A. King

Altered hippocampal synaptic plasticity may underlie age-related memory impairment. In acute hippocampal slices from aged (22–24 mo) and young adult (1–12 mo) male Brown Norway rats, extracellular excitatory postsynaptic field potentials were recorded in CA1 stratum radiatum evoked by Schaffer collateral stimulation. We used enhanced Ca2+ to Mg2+ ratio and paired-pulse stimulation protocol to induce maximum changes in the synaptic plasticity. Six episodes of theta-burst stimulation (TBS) or nine episodes of paired low-frequency stimulation (pLFS) were used to generate asymptotic long-term potentiation (LTP) and long-term depression (LTD), respectively. In addition, long-term depotentiation (LTdeP) or de-depression (LTdeD) from maximal LTP and LTD were examined using two episodes of pLFS or TBS. Multiple episodes of TBS or pLFS produced significant LTP or LTD in aged and young adult rats; this was not different between age groups. Moreover, there was no significant difference in the amount of LTdeP or LTdeD between aged and young adult rats. Our results show no age differences in the asymptotic magnitude of LTP or LTD, rate of synaptic modifications, development rates, reversal, or decay after postconditioning. Thus impairment of the basic synaptic mechanisms responsible for expression of these forms of plasticity is not likely to account for decline in memory function within this age range.


2007 ◽  
Vol 21 (6) ◽  
Author(s):  
Gaspard Montandon ◽  
Aida Bairam ◽  
Richard Horner ◽  
Richard Kinkead

2011 ◽  
Vol 106 (2) ◽  
pp. 662-666 ◽  
Author(s):  
Jessica L. Koranda ◽  
David N. Ruskin ◽  
Susan A. Masino ◽  
J. Harry Blaise

Ketogenic diets are very low in carbohydrates and can reduce epileptic seizures significantly. This dietary therapy is particularly effective in pediatric and drug-resistant epilepsy. Hypothesized anticonvulsant mechanisms of ketogenic diets focus on increased inhibition and/or decreased excitability/excitation. Either of these consequences might not only reduce seizures, but also could affect normal brain function and synaptic plasticity. Here, we characterized effects of a ketogenic diet on hippocampal long-term potentiation, a widely studied form of synaptic plasticity. Adult male rats were placed on a control or ketogenic diet for 3 wk before recording. To maintain the most physiological conditions possible, we assessed synaptic transmission and plasticity using chronic in vivo recordings in freely behaving animals. Rats underwent stereotaxic surgery to chronically implant a recording electrode in the hippocampal dentate gyrus and a stimulating electrode in the perforant path; they recovered for 1 wk. After habituation and stable baseline recording, 5-Hz theta-burst stimulation was delivered to induce long-term potentiation. All animals showed successful plasticity, demonstrating that potentiation was not blocked by the ketogenic diet. Compared with rats fed a control diet, rats fed a ketogenic diet demonstrated significantly diminished long-term potentiation. This decreased potentiation lasted for at least 48 h. Reduced potentiation in ketogenic diet-fed rats is consistent with a general increase in neuronal inhibition (or decrease in excitability) and decreased seizure susceptibility. A better understanding of the effects of ketogenic diets on synaptic plasticity and learning is important, as diet-based therapy is often prescribed to children with epilepsy.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Hans C. Dringenberg ◽  
Leora R. Branfield Day ◽  
Deanna H. Choi

Several recent studies have provided evidence that chronic treatment with the selective serotonin reuptake inhibitor (SSRI) fluoxetine can facilitate synaptic plasticity (e.g., ocular dominance shifts) in the adult central nervous system. Here, we assessed whether fluoxetine enhances long-term potentiation (LTP) in the thalamocortical auditory system of mature rats, a developmentally regulated form of plasticity that shows a characteristic decline during postnatal life. Adult rats were chronically treated with fluoxetine (administered in the drinking water, 0.2 mg/mL, four weeks of treatment). Electrophysiological assessments were conducted using an anesthetized (urethane)in vivopreparation, with LTP of field potentials in the primary auditory cortex (A1) induced by theta-burst stimulation of the medial geniculate nucleus. We find that, compared to water-treated control animals, fluoxetine-treated rats did not express higher levels of LTP and, in fact, exhibited reduced levels of potentiation at presumed intracortical A1 synapses. Bioactivity of fluoxetine was confirmed by a reduction of weight gain and fluid intake during the four-week treatment period. We conclude that chronic fluoxetine treatment fails to enhance LTP in the mature rodent thalamocortical auditory system, results that bring into question the notion that SSRIs act as general facilitators of synaptic plasticity in the mammalian forebrain.


Author(s):  
Anna M. Barron ◽  
Yasushi Hojo ◽  
Hideo Mukai ◽  
Shimpei Higo ◽  
Yuuki Ooishi ◽  
...  

AbstractEstradiol is synthesized from cholesterol in hippocampal neurons of adult rats by cytochrome P450 and hydroxysteroid dehydrogenase enzymes. These enzymes are expressed in the glutamatergic neurons of the hippocampus. Surprisingly, the concentration of estradiol and androgen in the hippocampus is significantly higher than that in circulation. Locally synthesized estradiol rapidly and potently modulates synaptic plasticity within the hippocampus. E2 rapidly potentiates long-term depression and induces spinogenesis through synaptic estrogen receptors and kinases. The rapid effects of estradiol are followed by slow genomic effects mediated by both estrogen receptors located at the synapse and nucleus, modulating long-term potentiation and promoting the formation of new functional synaptic contacts. Age-related changes in hippocampally derived estradiol synthesis and distribution of estrogen receptors may alter synaptic plasticity, and could potentially contribute to age-related cognitive decline. Understanding factors which regulate hippocampal estradiol synthesis could lead to the identification of alternatives to conventional hormone therapy to protect against age-related cognitive decline.


2020 ◽  
Vol 26 ◽  
Author(s):  
Jun-Jie Tang ◽  
Shuang Feng ◽  
Xing-Dong Chen ◽  
Hua Huang ◽  
Min Mao ◽  
...  

: Neurological diseases bring great mental and physical torture to the patients, and have long-term and sustained negative effects on families and society. The attention to neurological diseases is increasing, and the improvement of the material level is accompanied by an increase in the demand for mental level. The p75 neurotrophin receptor (p75NTR) is a low-affinity neurotrophin receptor and involved in diverse and pleiotropic effects in the developmental and adult central nervous system (CNS). Since neurological diseases are usually accompanied by the regression of memory, the pathogenesis of p75NTR also activates and inhibits other signaling pathways, which has a serious impact on the learning and memory of patients. The results of studies shown that p75NTR is associated with LTP/LTD-induced synaptic enhancement and inhibition, suggest that p75NTR may be involved in the progression of synaptic plasticity. And its pro-apoptotic effect is associated with activation of proBDNF and inhibition of proNGF, and TrkA/p75NTR imbalance leads to pro-survival or pro-apoptotic phenomena. It can be inferred that p75NTR mediates apoptosis in the hippocampus and amygdale, which may affect learning and memory behavior. This article mainly discusses the relationship between p75NTR and learning memory and associated mechanisms, which may provide some new ideas for the treatment of neurological diseases.


2020 ◽  
Vol 17 (4) ◽  
pp. 354-360 ◽  
Author(s):  
Yu-Xing Ge ◽  
Ying-Ying Lin ◽  
Qian-Qian Bi ◽  
Yu-Juan Chen

Background: Patients with temporal lobe epilepsy (TLE) usually suffer from cognitive deficits and recurrent seizures. Brivaracetam (BRV) is a novel anti-epileptic drug (AEDs) recently used for the treatment of partial seizures with or without secondary generalization. Different from other AEDs, BRV has some favorable properties on synaptic plasticity. However, the underlying mechanisms remain elusive. Objective: The aim of this study was to explore the neuroprotective mechanism of BRV on synaptic plasticity in experimental TLE rats. Methods: The effect of chronic treatment with BRV (10 mg/kg) was assessed on Pilocarpine induced TLE model through measurement of the field excitatory postsynaptic potentials (fEPSPs) in vivo. Differentially expressed synaptic vesicle protein 2A (SV2A) were identified with immunoblot. Then, fast phosphorylation of synaptosomal-associated protein 25 (SNAP-25) during long-term potentiation (LTP) induction was performed to investigate the potential roles of BRV on synaptic plasticity in the TLE model. Results: An increased level of SV2A accompanied by a depressed LTP in the hippocampus was shown in epileptic rats. Furthermore, BRV treatment continued for more than 30 days improved the over-expression of SV2A and reversed the synaptic dysfunction in epileptic rats. Additionally, BRV treatment alleviates the abnormal SNAP-25 phosphorylation at Ser187 during LTP induction in epileptic ones, which is relevant to the modulation of synaptic vesicles exocytosis and voltagegated calcium channels. Conclusion: BRV treatment ameliorated the over-expression of SV2A in the hippocampus and rescued the synaptic dysfunction in epileptic rats. These results identify the neuroprotective effect of BRV on TLE model.


Neuron ◽  
2004 ◽  
Vol 44 (5) ◽  
pp. 749-757 ◽  
Author(s):  
Qiang Zhou ◽  
Koichi J. Homma ◽  
Mu-ming Poo

Sign in / Sign up

Export Citation Format

Share Document