isolation stress
Recently Published Documents


TOTAL DOCUMENTS

222
(FIVE YEARS 45)

H-INDEX

35
(FIVE YEARS 3)

Metabolites ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 83
Author(s):  
Mohamed Z. Elhussiny ◽  
Phuong V. Tran ◽  
Yuriko Tsuru ◽  
Shogo Haraguchi ◽  
Elizabeth R. Gilbert ◽  
...  

The objective of this study was to determine the effects of centrally administered taurine on rectal temperature, behavioral responses and brain amino acid metabolism under isolation stress and the presence of co-injected corticotropin-releasing factor (CRF). Neonatal chicks were centrally injected with saline, 2.1 pmol of CRF, 2.5 μmol of taurine or both taurine and CRF. The results showed that CRF-induced hyperthermia was attenuated by co-injection with taurine. Taurine, alone or with CRF, significantly decreased the number of distress vocalizations and the time spent in active wakefulness, as well as increased the time spent in the sleeping posture, compared with the saline- and CRF-injected chicks. An amino acid chromatographic analysis revealed that diencephalic leucine, isoleucine, tyrosine, glutamate, asparagine, alanine, β-alanine, cystathionine and 3-methylhistidine were decreased in response to taurine alone or in combination with CRF. Central taurine, alone and when co-administered with CRF, decreased isoleucine, phenylalanine, tyrosine and cysteine, but increased glycine concentrations in the brainstem, compared with saline and CRF groups. The results collectively indicate that central taurine attenuated CRF-induced hyperthermia and stress behaviors in neonatal chicks, and the mechanism likely involves the repartitioning of amino acids to different metabolic pathways. In particular, brain leucine, isoleucine, cysteine, glutamate and glycine may be mobilized to cope with acute stressors.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0258364
Author(s):  
Koki Sakurai ◽  
Taichi Itou ◽  
Makiko Morita ◽  
Emiko Kasahara ◽  
Tetsuji Moriyama ◽  
...  

Importin α1/KPNA1 is a member of the Importin α family widely present in the mammalian brain and has been characterized as a regulator of neuronal differentiation, synaptic functionality, and anxiety-like behavior. In humans, a de novo mutation of the KPNA1 (human Importin α5) gene has been linked with schizophrenia; however, the precise roles of KPNA1 in disorder-related behaviors are still unknown. Moreover, as recent studies have highlighted the importance of gene-environment interactions in the development of psychiatric disorders, we investigated the effects of Kpna1 deletion and social isolation stress, a paradigm that models social stress factors found in human patients, on psychiatric disorder-related behaviors in mice. Through assessment in a behavioral battery, we found that Kpna1 knockout resulted in the following behavioral phenotype: (1) decreased anxiety-like behavior in an elevated plus maze test, (2) short term memory deficits in novel object recognition test (3) impaired sensorimotor gating in a prepulse inhibition test. Importantly, exposure to social isolation stress resulted in additional behavioral abnormalities where isolated Kpna1 knockout mice exhibited: (1) impaired aversive learning and/or memory in the inhibitory avoidance test, as well as (2) increased depression-like behavior in the forced swim test. Furthermore, we investigated whether mice showed alterations in plasma levels of stress-associated signal molecules (corticosterone, cytokines, hormones, receptors), and found that Kpna1 knockout significantly altered levels of corticosterone and LIX (CXCL5). Moreover, significant decreases in the level of prolactin were found in all groups except for group-housed wild type mice. Our findings demonstrate that Kpna1 deletion can trigger widespread behavioral abnormalities associated with psychiatric disorders, some of which were further exacerbated by exposure to adolescent social isolation. The use of Kpna1 knockout mice as a model for psychiatric disorders may show promise for further investigation of gene-environment interactions involved in the pathogenesis of psychiatric disorders.


2021 ◽  
Vol 22 (19) ◽  
pp. 10678
Author(s):  
Francesco Matrisciano ◽  
Graziano Pinna

Social behavioral changes, including social isolation or loneliness, increase the risk for stress-related disorders, such as major depressive disorder, posttraumatic stress disorder (PTSD), and suicide, which share a strong neuroinflammatory etiopathogenetic component. The peroxisome-proliferator activated receptor (PPAR)-α, a newly discovered target involved in emotional behavior regulation, is a ligand-activated nuclear receptor and a transcription factor that, following stimulation by endogenous or synthetic ligands, may induce neuroprotective effects by modulating neuroinflammation, and improve anxiety and depression-like behaviors by enhancing neurosteroid biosynthesis. How stress affects epigenetic mechanisms with downstream effects on inflammation and emotional behavior remains poorly understood. We studied the effects of 4-week social isolation, using a mouse model of PTSD/suicide-like behavior, on hippocampal PPAR-α epigenetic modification. Decreased PPAR-α expression in the hippocampus of socially isolated mice was associated with increased levels of methylated cytosines of PPAR-α gene CpG-rich fragments and deficient neurosteroid biosynthesis. This effect was associated with increased histone deacetylases (HDAC)1, methyl-cytosine binding protein (MeCP)2 and decreased ten-eleven translocator (TET)2 expression, which favor hypermethylation. These alterations were associated with increased TLR-4 and pro-inflammatory markers (e.g., TNF-α,), mediated by NF-κB signaling in the hippocampus of aggressive mice. This study contributes the first evidence of stress-induced brain PPAR-α epigenetic regulation. Social isolation stress may constitute a risk factor for inflammatory-based psychiatric disorders associated with neurosteroid deficits, and targeting epigenetic marks linked to PPAR-α downregulation may offer a valid therapeutic approach.


2021 ◽  
pp. 136301
Author(s):  
Jordan Logue ◽  
Kristin Schoepfer ◽  
Alfonso Brea Guerrero ◽  
Yi Zhou ◽  
Mohamed Kabbaj

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Arvin Haj-Mirzaian ◽  
Kiana Ramezanzadeh ◽  
Siavash Shariatzadeh ◽  
Michael Tajik ◽  
Farima Khalafi ◽  
...  

AbstractIt has been well documented that chronic stress can induce atherosclerotic changes, however, the underlying mechanisms is yet to be established. In this regard, this study aimed to elucidate the relation between hypothalamic-pituitary adrenal-axis (HPA-axis), toll-like receptors (TLRs), as well as M1/M2 macrophage ratio and pre-atherosclerotic changes in social isolation stress (SIS) in mice. We used small interfering RNA against the glucocorticoid receptor (GR) to evaluate the relation between HPA-axis and TLRs. C57BL/6J mice were subjected to SIS and RT-PCR, ELISA, flow cytometry, and immunohistochemistry were used to assess the relations between pre-atherosclerotic changes and TLRs, macrophage polarization, pro-inflammatory cytokines, and cell adhesion molecules in aortic tissue. We used TAK-242 (0.3 mg/kg, intraperitoneally), a selective antagonist of TLR4, as a possible prophylactic treatment for atherosclerotic changes induced by SIS. We observed that isolated animals had higher serum concentration of corticosterone and higher body weight in comparison to normal animals. In isolated animals, results of in vitro study showed that knocking-down of the GR in bone marrow–derived monocytes significantly decreased the expression of TLR4. In vivo study suggested higher expression of TLR4 on circulating monocytes and higher M1/M2 ratio in aortic samples. Pathological study showed a mild pre-atherosclerotic change in isolated animals. Finally, we observed that treating animals with TAK-242 could significantly inhibit the pre-atherosclerotic changes. SIS can possibly increase the risk of atherosclerosis through inducing abnormal HPA-axis activity and subsequently lead to TLR4 up-regulation, vascular inflammation, high M1/M2 ratio in intima. Thus, TLR4 inhibitors might be a novel treatment to decrease the risk of atherosclerosis induced by chronic stress.


2021 ◽  
Author(s):  
Maziar Zahir ◽  
Siavash Shariatzadeh ◽  
Ayda Khosravi ◽  
Fatima Ahmed Alshaikh ◽  
Parichehr Moradi ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Alessandra Berry ◽  
Barbara Collacchi ◽  
Sara Capoccia ◽  
Maria Teresa D'Urso ◽  
Serena Cecchetti ◽  
...  

Social isolation is a powerful stressor capable of affecting brain plasticity and function. In the case of breast cancer, previous data indicate that stressful experiences may contribute to a worse prognosis, activating neuroendocrine and metabolism pathways, although the mechanisms underlying these effects are still poorly understood. In this study, we tested the hypothesis that chronic isolation stress (IS) may boost hypothalamic–pituitary–adrenal (HPA) axis activity, leading to changes in the hypothalamic expression of genes modulating both mood and metabolism in an animal model of breast cancer. This centrally activated signaling cascade would, in turn, affect the mammary gland microenvironment specifically targeting fat metabolism, leading to accelerated tumor onset. MMTVNeuTg female mice (a model of breast cancer developing mammary hyperplasia at 5 months of age) were either group-housed (GH) or subjected to IS from weaning until 5 months of age. At this time, half of these subjects underwent acute restraint stress to assess corticosterone (CORT) levels, while the remaining subjects were characterized for their emotional profile in the forced swimming and saccharin preference tests. At the end of the procedures, all the mice were sacrificed to assess hypothalamic expression levels of Brain-derived neurotrophic factor (Bdnf), Neuropeptide Y (NpY), Agouti-Related Peptide (AgRP), and Serum/Glucocorticoid-Regulated Protein Kinase 1 (SgK1). Leptin and adiponectin expression levels, as well as the presence of brown adipose tissue (BAT), were assessed in mammary fat pads. The IS mice showed higher CORT levels following acute stress and decreased expression of NpY, AgRP, and SgK1, associated with greater behavioral despair in the forced swimming test. Furthermore, they were characterized by increased consumption of saccharin in a preference test, suggesting an enhanced hedonic profile. The IS mice also showed an earlier onset of breast lumps (assessed by palpation) accompanied by elevated levels of adipokines (leptin and adiponectin) and BAT in the mammary fat pads. Overall, these data point to IS as a pervasive stressor that is able to specifically target neuronal circuits, mastered by the hypothalamus, modulating mood, stress reactivity and energy homeostasis. The activation of such IS-driven machinery may hold main implications for the onset and maintenance of pro-tumorigenic environments.


Sign in / Sign up

Export Citation Format

Share Document