scholarly journals Reflections on: “A general role for adaptations in G-Proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function”

2016 ◽  
Vol 1645 ◽  
pp. 71-74 ◽  
Author(s):  
Eric J. Nestler
1991 ◽  
Vol 548 (1-2) ◽  
pp. 100-110 ◽  
Author(s):  
Rose Z. Terwilliger ◽  
Dana Beitner-Johnson ◽  
Kevin A. Sevarino ◽  
Stanley M. Crain ◽  
Eric J. Nestler

1991 ◽  
Vol 276 (3) ◽  
pp. 683-689 ◽  
Author(s):  
J G Kiang ◽  
Y Y Wu ◽  
M C Lin

The basal level of intracellular cyclic AMP (cAMPi) in A-431 cells incubated at 37 degrees C in Na(+)-containing Hanks solution is 2086 +/- 139 fmol/10(6) cells. When cells are exposed to 45 degrees C for 10 min, cAMPi increases by 40 +/- 4%, and then returns to basal levels within 30 min. Incubating cells in Ca(2+)-free or Mg(2+)-free Hanks solution has no effect on the heat-induced increase in cAMPi, but the increase is inhibited by acid-loading cells to intracellular pH 7.0 or 6.8. In unheated cells, cAMPi increases by 16 +/- 8%, 53 +/- 7%, or 39 +/- 8%, when incubated with isobutyl-1-methylxanthine (1 mM), Ro 20-1724 (0.5 mM), or theophylline (1 mM) respectively. However, heat treatment further elevates cAMPi in cells treated with phosphodiesterase inhibitors, indicating that heat treatment and phosphodiesterase inhibitors elevate cAMPi by a different pathway(s). Heat treatment increases adenylate cyclase activity 2.5-fold. When forskolin (150 microM), an adenylate cyclase stimulator, is applied to cells, the basal cAMPi increases 28 +/- 6-fold compared with controls. Subsequent heating of these cells lowers cAMPi levels to 7.0 +/- 0.5 times that in control cells. This decrease is prevented by pretreatment with pertussis toxin (30 ng/ml, 24 h), suggesting that G-proteins are involved in the process of heat-induced cAMPi increase. 2-Deoxy-D-glucose (10 mM), NaN3 (10 mM) and 2,4-dinitrophenol (1 mM) also increase cAMPi in A-431 cells. However, application of these metabolic inhibitors to cells before heat treatment does not result in cAMPi levels greater than that observed in cells with heat alone. Similar observations are obtained in heat-treated cells previously exposed to adenosine, but not to AMP or ADP. These data are the first to suggest that thermally induced increase in cAMPi is due to a combination of activation of adenylate cyclase and G-proteins, and an increase in adenosine owing to ATP breakdown caused by hyperthermia.


1995 ◽  
Vol 149-150 (1) ◽  
pp. 271-278 ◽  
Author(s):  
Ronald L. Davis ◽  
Jim Cherry ◽  
Brigitte Dauwalder ◽  
Pyung-Lim Han ◽  
Efthimios Skoulakis
Keyword(s):  

Author(s):  
Pascale Cochaux ◽  
Jacqueline Van Sande ◽  
Jacques E. Dumont

1996 ◽  
Vol 199 (10) ◽  
pp. 2153-2160
Author(s):  
S M Wilson ◽  
S Rakhit ◽  
R Murdoch ◽  
J D Pediani ◽  
H Y Elder ◽  
...  

Experiments were undertaken using cultured equine sweat gland epithelial cells that express purine receptors belonging to the P2U subclass which allow the selective agonist uridine triphosphate (UTP) to increase the concentration of intracellular free Ca2+ ([Ca2+]i). Experiments using pertussis toxin (Ptx), which inactivates certain guanine-nucleotide-binding proteins (G-proteins), showed that this response consisted of Ptx-sensitive and Ptx-resistant components, and immunochemical analyses of the G-protein alpha subunits present in the cells showed that both Ptx-sensitive (alpha i1-3) and Ptx-resistant (alpha q/11) G-proteins were expressed. P2U receptors may, therefore, normally activate both of these G-protein families. Ptx-sensitive, alpha i2/3 subunits permit inhibitory control of adenylate cyclase, and UTP was shown to cause Ptx-sensitive inhibition of adrenaline-evoked cyclic AMP accumulation, suggesting that the receptors activate Gi2/3. Experiments using cells grown on permeable supports suggested that P2U receptors became essentially confined to the apical membrane in post-confluent cultures. Polarised epithelia may, therefore, express apical P2U receptors which influence two centrally important signal transduction pathways. It is highly improbable that these receptors could be activated by nucleotides released from purinergic nerves, but they may be involved in the autocrine regulation of epithelial function.


Sign in / Sign up

Export Citation Format

Share Document