Long Term Effects of Low Frequency (10 Hz) Vagus Nerve Stimulation on EEG and Heart Rate Variability in Crohn's Disease: A Case Report

2014 ◽  
Vol 7 (6) ◽  
pp. 914-916 ◽  
Author(s):  
Didier Clarençon ◽  
Sonia Pellissier ◽  
Valérie Sinniger ◽  
Astrid Kibleur ◽  
Dominique Hoffman ◽  
...  
Seizure ◽  
2008 ◽  
Vol 17 (5) ◽  
pp. 469-472 ◽  
Author(s):  
Stephan A. Koenig ◽  
Elke Longin ◽  
Nellie Bell ◽  
Julia Reinhard ◽  
Thorsten Gerstner

Author(s):  
Jozsef Constantin Széles ◽  
Stefan Kampusch ◽  
Florian Thürk ◽  
Christian Clodi ◽  
Norbert Thomas ◽  
...  

Author(s):  
Vinzent Wolf ◽  
Anne Kühnel ◽  
Vanessa Teckentrup ◽  
Julian Koenig ◽  
Nils B. Kroemer

AbstractNon-invasive brain stimulation techniques, such as transcutaneous auricular vagus nerve stimulation (taVNS), have considerable potential for clinical use. Beneficial effects of taVNS have been demonstrated on symptoms in patients with mental or neurological disorders as well as transdiagnostic dimensions, including mood and motivation. However, since taVNS research is still an emerging field, the underlying neurophysiological processes are not yet fully understood, and the replicability of findings on biomarkers of taVNS effects has been questioned. Here, we perform a living Bayesian random effects meta-analysis to synthesize the current evidence concerning the effects of taVNS on heart rate variability (HRV), a candidate biomarker that has, so far, received most attention in the field. To keep the synthesis of evidence transparent and up to date as new studies are being published, we developed a Shiny web app that regularly incorporates new results and enables users to modify study selection criteria to evaluate the robustness of the inference across potential confounds. Our analysis focuses on 17 single-blind studies comparing taVNS versus sham in healthy participants. These newly synthesized results provide strong evidence for the null hypothesis (g = 0.011, CIshortest = [−0.103, 0.125], BF01 = 25.587), indicating that acute taVNS does not alter HRV compared to sham. To conclude, based on a synthesis of the available evidence to date, there is no support for the hypothesis that HRV is a robust biomarker for acute taVNS. By increasing transparency and timeliness, we believe that the concept of living meta-analyses can lead to transformational benefits in emerging fields such as non-invasive brain stimulation.


2002 ◽  
Vol 3 (5) ◽  
pp. 475-479 ◽  
Author(s):  
A.P. Aldenkamp ◽  
H.J.M. Majoie ◽  
M.W. Berfelo ◽  
S.M.A.A. Evers ◽  
A.G.H. Kessels ◽  
...  

2020 ◽  
Author(s):  
Ibrahim T. Mughrabi ◽  
Jordan Hickman ◽  
Naveen Jayaprakash ◽  
Eleni S. Papadoyannis ◽  
Adam Abbas ◽  
...  

AbstractVagus nerve stimulation (VNS) is a neuromodulation therapy with the potential to treat a wide range of chronic conditions in which inflammation is implicated, including type 2 diabetes, obesity, atherosclerosis and heart failure. Many of these diseases have well-established mouse models but due to the significant surgical and engineering challenges that accompany a reliable interface for long-term VNS in mice, the therapeutic implications of this bioelectronic approach remain unexplored. Here, we describe a long-term VNS implant in mice, developed at 3 research laboratories and validated for between-lab reproducibility. Implant functionality was evaluated over 3-8 weeks in 81 anesthetized or conscious mice by determining the stimulus intensity required to elicit a change in heart rate (heart rate threshold, HRT). HRT was also used as a method to standardize stimulation dosing across animals. Overall, 60-90% of implants produced stimulus-evoked physiological responses for at least 4 weeks, with HRT values stabilizing after the second week of implantation. Furthermore, stimulation delivered through 6-week-old implants decreased TNF levels in a subset of mice with acute inflammation caused by endotoxemia. Histological examination of 4- to 6-week-old implants revealed fibrotic encapsulation and no gross fiber loss. This implantation and dosing approach provide a tool to systematically investigate the therapeutic potential of long-term VNS in chronic diseases modeled in the mouse, the most widely used vertebrate species in biomedical research.


Sign in / Sign up

Export Citation Format

Share Document